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Abstract
Many challenging sequential decision-making problems require agents to master multiple tasks.
For instance, game agents may need to gather resources, attack opponents, and defend against
attacks. Learning algorithms can thus benefit from having separate policies for these tasks, and
from knowing when each one is appropriate. How well this approach works depends on how
tightly coupled the tasks are. Three cases are identified: Isolated tasks have distinct semantics
and do not interact, interleaved tasks have distinct semantics but do interact, and blended tasks
have regions where semantics from multiple tasks overlap. Learning across multiple tasks is
studied in this article with Modular Multiobjective NEAT, a neuroevolution framework applied
to three variants of the challenging Ms. Pac-Man video game. In the standard blended version
of the game, a surprising, highly effective machine-discovered task division surpasses human-
specified divisions, achieving the best scores to date in this game. In isolated and interleaved
versions of the game, human-specified task divisions are also successful, though the best scores
are surprisingly still achieved by machine discovery. Modular neuroevolution is thus shown to
be capable of finding useful, unexpected task divisions better than those apparent to a human
designer.
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1 Introduction

Discovering intelligent agent behavior automatically for complex environments is an important
goal for Artificial Intelligence. Such behavior is needed in both real-world robots and virtual
environments. However, most interesting domains consist of multiple tasks, each requiring dif-
ferent behavior. Such behavior is multimodal, because a distinct mode of behavior is required in
each task. Learning such behavior is difficult, and even harder when semantics from individual
tasks overlap.

This article presents a theoretical framework for identifying tasks in complex domains, and
applies several methods of constructing modular policies for such domains using Modular Mul-
tiobjective Neuroevolution of Augmenting Topologies (MM-NEAT; Schrum and Miikkulainen,
2014), a variant of the popular NEAT algorithm (Stanley and Miikkulainen, 2002) that supports
networks with several types of output modules. These modules can be associated with indi-
vidual tasks. The framework of this article indicates how tasks in a domain are related to each
other. Tasks are defined by partitioning the state space such that the frequency of transitions
between tasks is low. This approach is then complimented by using domain semantics to define
predicates (based on high-level domain features) that identify each task.
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A means of classifying domains with multiple tasks is presented. There are three categories,
which differ based on how tightly coupled the tasks are. First, when tasks are isolated, nothing
that occurs in one task can influence another task. The evaluation order does not matter, and there
is a single transition from one sequentially ordered task to the next. Second, when transitions
occur back and forth between tasks, but the distinctions between tasks are still clear, then the
tasks are interleaved. In both isolated and interleaved cases a learning agent can easily split up
a domain by dedicating separate policies to each task. In contrast, in the third case distinctions
are not clear. In such domains, it is sensible to identify the prominent tasks, and treat the domain
as a blend of these representative tasks. Success in these blended domains depends on an agent
having the freedom to discover its own task division, but such freedom actually leads to the best
performance in interleaved and isolated tasks as well.

Many domains have multiple tasks, such as robotics, sports, and video games. A robot
could be deployed in multiple environments, and each deployment is a different isolated task.
In baseball, the tasks of batting and fielding are isolated, since both teams stop play to switch
between these roles. In sports like American football, the offensive and defensive aspects of
the game are different interleaved tasks. In a sport like dodgeball, the offensive and defensive
roles are blended because there are multiple balls in play, and one could be struck by a ball in
the middle of attempting to throw one. Video games share many features in common with these
domains, since agents must often take on offensive and defensive roles. An agent in a shooter
game will generally need to avoid damage while also attacking, and also needs to forage for
items, and perform other high-level strategic actions. Some games have power-ups that cause
stark changes in the game dynamics, which often correspond to a task switch.

This paper builds on recent research in Ms. Pac-Man using evolved neural net-
works (Schrum and Miikkulainen, 2014, 2015). To support multiple tasks, networks have sep-
arate output modules to represent different behaviors. This architecture can implement multi-
modal behavior in two ways: A human designer can specify how modules are to be used in
each task, in a style similar to Multitask Learning (Caruana, 1993), or evolution can discover
the task division automatically using special preference neurons. This article gives an in-depth
analysis of previous results in the blended and interleaved variants of the game, and includes
new experiments in a version with isolated tasks.

The main conclusion is that approaches that discover a task division using preference neu-
rons produce the best scores in all variants. This conclusion is true even in the new domain
with isolated tasks, which would seem most likely to benefit from a clean multitask division
between separate tasks. Although multitask networks can handle the domains with isolated and
interleaved tasks, they are ineffective in the blended version of the game: Preference neurons
are vital in this version. In all domains, the most effective task division turned out to be an
unexpected one: Evolution discovers an escape module that handles situations in which Ms.
Pac-Man is nearly surrounded, which only comprises 5% of the game, and a general pill and
ghost-eating module that handles the remaining 95%. In addition to helping Ms. Pac-Man es-
cape tough situations, this division implements a luring behavior. The general module gathers
ghosts close together, so that the escape module can lead Ms. Pac-Man to a power pill, making
it easy to capture the nearby ghosts. This highly asymmetrical task division was not obvious to
a human designer a priori, demonstrating the power of the modular neuroevolution approach.

This paper proceeds by first discussing related work learning in domains with multiple
tasks. Then ways of identifying domains with isolated, interleaved and blended tasks are dis-
cussed. Next, the learning methods used in these domains are explained, followed by experi-
ments showing which methods work best in each type of domain.
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2 Related Work

Multimodal behavior can often be generated with the use of modular control policies. This sec-
tion presents approaches that involve separately learned controllers, Hierarchical Reinforcement
Learning approaches, and single controllers with modular architectures.

2.1 Separately Learned Controllers
For complex tasks, it is common to combine controllers into a hierarchy. Such hierarchies can
be hand-designed (Brooks, 1986) or learned piece by piece. For example, Togelius’s (2004)
evolved subsumption architecture was used in EvoTanks (Thompson et al., 2009) and Unreal
Tournament (van Hoorn et al., 2009), and Stone and Veloso’s (2000) Layered Learning was
applied to simulated RoboCup Soccer. Recently, Lessin et al. (2013) used a human-designed
hierarchical syllabus to evolve complex behavior for virtual creatures. Though effective, these
approaches require a programmer to divide the domain into constituent tasks and develop effec-
tive training scenarios for each.

2.2 Hierarchical Reinforcement Learning
Hierarchical Reinforcement Learning (HRL) also produces hierarchical controllers consisting of
multiple sub-controllers. In general, HRL methods require the hierarchy to be human-specified
(Dietterich, 1998), though methods for learning the hierarchy have also been developed (Hengst,
2002). However, these methods generally apply only to limited situations or produce highly con-
strained results. Most HRL techniques are based on the formalism of Semi-Markov Decision
Processes (SMDPs), which was first used to develop partial control policies called options (Sut-
ton et al., 1999). Similar techniques, e.g. skills (Konidaris and Barto, 2009) and activities (Barto
and Mahadevan, 2003), also fit this formalism. The methods developed in this paper can also be
cast in the SMDP formalism, but they do not depend on it. Therefore, a simpler formalization is
presented in Section 3.

2.3 Modular Architectures
A hierarchical control policy is also a modular policy, and several evolutionary approaches to
learning multimodal behavior simply focus on discovering modular policies. One approach is to
associate components of the architecture automatically with specific functionality. For instance,
Calabretta et al. (2000) evolved neural networks to control robots using a duplication operator,
which copies one output neuron with all of its connections and weights (duplication can only
be performed once per output neuron). The network then has two outputs for the same actuator,
and needs to arbitrate between them. Such arbitration is performed by selector units: For each
actuator, the output neuron with the highest corresponding selector unit activation controls the
actuator for that time step.

A similar approach is Module Mutation (Schrum and Miikkulainen, 2012, 2014), which in-
troduces groups of neurons rather than individual neurons. Unlike duplication, however, Module
Mutation can be performed multiple times, with no bound on the number of new modules pro-
duced. A single Module Mutation adds enough output neurons to define a new policy, plus an
additional neuron to arbitrate between modules. The behavior-defining neurons are called policy
neurons, and the one arbitration neuron per module is called a preference neuron. Preference
neurons are similar to the selector units of Calabretta et al. (2000). Since Module Mutation is
used in this paper, it is discussed further in Section 4.3.3.

Other researchers have developed modular networks with a more general concept of a mod-
ule (Clune et al., 2013; Kashtan and Alon, 2005), i.e. a cluster of interconnected neurons with
few connections to neurons in other clusters. Such modular networks can also be created using
generative and developmental methods (Mouret and Doncieux, 2008; Verbancsics and Stanley,
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2011; Huizinga et al., 2014; Kodjabachian and Meyer, 1998; Gruau, 1994; Suchorzewski and
Clune, 2011). These methods evolve modular neural networks assuming that having different
modules handle different parts of the task makes optimization easier. Compared to these ap-
proaches, the modular networks of this paper create clear task divisions in which it is always
known which module is responsible for an agent’s actions.

Another approach is to create a modular policy with a population of distinct neural net-
works. An example of this approach is Neural Learning Classifier Systems (Howard et al., 2010;
Hurst and Bull, 2006; Dam et al., 2008), in which a single agent is controlled by a population
of neural networks, subsets of which activate to handle particular situations. During learning,
activated networks are generally modified according to a rule similar to that used in temporal
difference learning (Sutton and Barto, 1998). Individual networks also accrue fitness whenever
activated, and a genetic algorithm is periodically or probabilistically used to allow offspring of
fitter networks to replace less fit networks.

Modular policies have also been explored in Genetic Programming (GP). An early example
is Koza’s (1994) Automatically Defined Functions, which encapsulate portions of a program
tree that can potentially be reused. A similar GP technique is Adaptive Representation through
Learning (Rosca, 1996; Rosca and Ballard, 1996) which culls modules from program trees based
on differential parent/child fitness.

All of these techniques face the same challenge of having to break a domain into separate
tasks. The next section presents a new way of identifying tasks within a domain.

3 Task Divisions

This section first describes the Markov Decision Process (MDP) formalism that is the basis
of Reinforcement Learning (RL) problems (Sutton and Barto, 1998). This formalism is then
used to specify a way of identifying individual tasks. The nature of the task division is used to
distinguish between domains where tasks are isolated, interleaved, or blended.

3.1 Markov Decision Process
An MDP is a formal description of a domain in terms of the results of taking certain actions in
certain states. Specifically, an MDP is a tuple (S,A,P,R), where S is the state space, A is the
set of actions, P is the transition function, andR is the reward function. The transition function
is defined as P : (S × A × S) → [0, 1] where P(s, a, s′) returns the probability of reaching
state s′ immediately after performing action a in state s. The reward function provides the agent
with feedback on how well it is performing. Typical RL formulations use scalar rewards, butR
can be extended to multiple objectives: R : (S ×A×S)→ RN is defined such thatR(s, a, s′)
returns a tuple of the expected immediate rewards in each objective for performing action a in
state s and ending up in state s′. This tuple has length N , which is the number of objectives.

The commonly used discount factor γ is excluded from this definition because only
episodic domains are considered in this article. Therefore γ = 1 in all cases. As a result,
the goal of an agent is to maximize the sum of rewards in each objective throughout the course
of an episode. An episode is an evaluation period with definite start and end points, which al-
lows rewards to be safely weighted equally without emphasizing early rewards in favor of later
rewards (Sutton and Barto, 1998). For use in an evolutionary algorithm, the sum of rewards in
each objective is treated as a different fitness function subject to multiobjective optimization.

Because every episode has a start and end point, specific start and end states can be identi-
fied in S. Strictly speaking, there can be multiple start and end states, but these can be abstracted
away by using a single master start state that randomly transitions to one of the actual start states,
and a master end state to which all actual end states involuntarily transition. These master start
and end states will simplify the discussion of how tasks are divided in the isolated case. How-
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ever, in general it is possible for task transitions to occur in the middle of an episode. Whereas
episodes have definite start and end states, an agent may switch back and forth between several
tasks in the course of an episode.

It is worth pointing out that many interesting domains are actually Partially Observable
MDPs (POMDPs; Sutton and Barto, 1998), meaning that states cannot be distinguished without
a perfect memory of all past states visited. The extra challenges of POMDPs slightly complicate
the formalism provided so far, but these complications can be safely ignored in the discussion
below, because the observability of states does not directly impact whether or not the domain
consists of separate tasks. All POMDPs have underlying MDPs resulting from granting agents
an unbounded memory of the history of observations they have made. Therefore, when a domain
is actually a POMDP, it can still be categorized according to the following definitions if they
apply to the domain’s underlying MDP. Whether or not the agent is aware of the fact that it is in
a POMDP is irrelevant.

The next three sections use the definition of an MDP to explain the concepts of isolated,
interleaved, and blended tasks. This formalism provides a framework for thinking about the
types of multimodal behavior needed in different domains, and how to achieve it.

3.2 Isolated Tasks
Isolated tasks do not interact with each other at all. Each such task is essentially a different
problem, even when a single agent needs to be able to perform all of them. Humans are capable
of performing many tasks that have nothing to do with each other. It is not uncommon for a
person’s leisure activities, e.g. playing basketball, drawing, or mountain climbing, to be com-
pletely unrelated to one’s job, which could involve reading reports, construction, or managing
employees. It is therefore clear that any fully general, artificially intelligent agent must be able
to handle multiple tasks to stand on even footing with humans.

Because a domain with isolated tasks can be viewed as a collection of separate prob-
lems, its structure is the same as if it were constructed from separate MDPs. Do-
mains with isolated tasks can be constructed by taking any set of T distinct domains
(S1,A1,P1,R1), . . . , (ST ,AT ,PT ,RT ) and combining them into one MDP (S,A,P,R). In
this combined MDP,

S =

T⋃
i=1

Si. (1)

Note that {S1, . . . ,ST } is a partition of S. The definition of a partition means that S is the union
of these sets (equation 1 above), which are pairwise disjoint:

∀i, j ∈ {1, . . . , T} : (i = j ∨ Si ∩ Sj = ∅). (2)

Importantly, each state is in exactly one task because all tasks cover S, but are disjoint from each
other. This requirement is imposed even if states from different MDPs look identical to an agent
in those MDPs, since the source MDP of a given state is part of what defines that state: Two
states from different MDPs are different by virtue of being from different MDPs. Of course, an
agent may not know which MDP a state came from. This issue relates to POMDPs: States from
different tasks may look identical to an agent, but are distinct because the tasks are distinct.

The action space is defined similarly as

A =

T⋃
i=1

Ai, (3)

but in this case there is no strict partition requirement. In fact, in a situation where one would
actually want to have one agent learn multiple isolated tasks, it makes sense for the action spaces
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of each task to be the same. Such is the case for the isolated Ms. Pac-Man domain of this article,
but is not a requirement of the definition.

The transition function for the combined MDP is defined as

P(s, a, s′) = Pi(s, a, s
′) if s, s′ ∈ Si and a ∈ Ai. (4)

However, if s ∈ Si and s′ ∈ Sj for i 6= j, then P(s, a, s′) = 0 regardless of a, except in a few
special cases. According to the formalism defined above, each of the constituent task MDPs has
exactly one start state and one end state. So, if sistart is the start state for Task i, and siend is the
end state for Task i, then

P(siend, a, s
i+1
start ) = 1 for all a ∈ A and 1 ≤ i < T. (5)

Therefore, a single episode in the combined MDP consists of one episode in each task, in se-
quence. However, this construction is simply a means of fitting isolated tasks into a single
formally defined MDP. In practice, the order of evaluation does not matter, and could even be
done in parallel without consequence. In fact, given an MDP, one can determine if it consists of
isolated tasks by checking to see if its state space can be partitioned into tasks whose evaluation
order does not affect the outcome of evaluation.

The reward function R is the last component that needs to be defined. Because the state
space is partitioned across tasks, the reward function for the whole domain is simply the re-
ward function for the given task in which the states are. Therefore, R(s, a, s′) = Ri(s, a, s

′)
for s, s′ ∈ Si, andR(s, a, s′) = 0 for s ∈ Si, s′ ∈ Sj , and i 6= j.

It is not uncommon for isolated tasks to each have different measures of performance,
which makes the use of multiobjective optimization in such domains appropriate. However,
separate objectives are not a requirement of isolated tasks. For example, a person might work
two separate jobs: store clerk by day, and musician by night. These jobs are isolated tasks, but
performance in both could be measured by the amount of money earned.

The above discussion constructs a domain with isolated tasks from several individual tasks,
but these definitions also reveal how a domain with isolated tasks can be identified. It must be
possible to partition the state space into tasks whose evaluation order does not affect the out-
comes within each individual task. In particular, final rewards should be the same regardless of
execution order. Such an outcome is only possible if the transition function in the original do-
main only transitions from one task to the next in sequence, without ever returning to a previous
task.

If an agent can transition back and forth between tasks, then those tasks are interleaved, as
will be described next.

3.3 Interleaved Tasks
Interleaved tasks are separate and distinct, but an agent can transition back and forth between
them in the course of a single episode. It is always clear which task an agent is in, but the
agent can now have some control over when task transitions occur. As a result, an agent may be
preparing for one task while still in another.

Isolated tasks can be thought of as an extreme example of interleaving: Each task is visited
only once before shifting to the next. However, the definition of a domain with interleaved tasks
is more permissive; some of the requirements of isolated tasks must be relaxed to arrive at the
definition of interleaved tasks.

First, the requirement that the state spaces for the individual tasks create a partition of the
combined state space will be retained. Every state is a member of exactly one task. However,
more ways of transitioning between different tasks are now allowed. The state space Si for any
given task can have transitions to any other task Sj where i 6= j.
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However, for the concept of interleaved tasks to be useful, an agent should mostly remain
in each task for an extended period before switching to another, so that its actions can have a
useful impact in each task. In other words, the proportion of task switches to total time spent in
the domain should be small. A low rate of thrashing back and forth between tasks indicates that
a domain consists of a few important tasks that partition the state space. Of course, frequency
of task switches also depends on a policy π : S → A (assuming the policy is deterministic),
but because state transitions are stochastic, even the policy does not completely dictate which
states are visited. The sequence of states visited within an episode determines the number of
task transitions it contains. Therefore, an episode e consisting of m states can be defined as the
sequence of visited states s1, s2, . . . , sm. Given this definition of an episode, the thrashing rate
τe of episode e is defined as

τe = xe/m, (6)

where xe is the number of task transitions in e. The number of task transitions can be formally
defined as the cardinality, or size, of the set of states in the episode where the next state is in a
different task:

xe = |{si ∈ e|si ∈ Sj ∧ si+1 ∈ Sk ∧ j 6= k}|, (7)

where i ∈ {1, . . . ,m − 1}, and therefore refers to any state before the last state, and j, k ∈
{1, . . . , T}, so that each refers to one of the T tasks in the MDP. In other words, each time
adjacent states of the episode are in different tasks, one task transition is tallied. From τe, the
domain’s thrashing rate τ̄ is defined as the average τe across all possible e. For a domain to have
distinct interleaved tasks, τ̄ must be low.

Calculating τ̄ may not be possible, but a rough estimate is enough to determine whether a
partition of the state space creates interleaved tasks. The lower τ̄ is, the more likely a domain
can be usefully labelled as having interleaved tasks. The interleaved domain used in this paper
has a thrashing rate less than 0.01, as will be explained in Section 5.1.2.

Although the thrashing rate provides a way of identifying the states in each task, the in-
tuitive notion of a task is that each one has some distinct semantic properties that are clear to
someone who understands the domain. This concept applies to isolated tasks as well, but is
especially important in conceptualizing interleaved tasks. In a domain with interleaved tasks,
some obvious set of semantic properties should correspond to the structurally defined tasks that
result in a low τ̄ . Each task should have a predicate that is true for all states in that task, and
false for all other states. Formally, ψ1, . . . , ψT : S → {True,False} are semantic predicates for
the T tasks in the MDP for which each state satisfies one and only one semantic predicate:

∀i ∈ {1, . . . , T}∀s ∈ Si : ψi(s) and (8)

∀i, j ∈ {1, . . . , T}∀s ∈ Si : (i 6= j → ¬ψj(s)). (9)

These predicates allow any task i to be defined as the subset of S that satisfies ψi: For any
predicate on states ψ : S → {True,False}, define that predicate’s task Φ(ψ) as the set of states
that satisfy it:

Φ(ψ) = {s ∈ S|ψ(s)}. (10)

For the set of predicates above that satisfy properties 8 and 9, Φ(ψi) = Si for all i ∈
{1, . . . , T}. Generally, an initial guess at suitable predicates should lead to the desired low
thrashing rate. Such predicates should also exist for any set of isolated tasks.

However, predicates with properties 8 and 9 are not easy to define in domains with blended
tasks, described next.
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3.4 Blended Tasks
Interleaved tasks are defined in terms of the structure of the state space, which in turn depends
on the transition function. However, it is also desirable for states in the same task to share high-
level properties linked to semantic predicates. Unfortunately, it is sometimes hard to partition the
state space of a domain with respect to such properties. In fact, sets of states in which different
semantic properties hold may not be disjoint. The region where such properties overlap blends
the properties of different tasks.

Assume that M distinct semantic predicates ψ1, . . . , ψM are identified in some domain,
but that

∃i, j ∈ {1, . . . ,M} : (i 6= j ∧ Φ(ψi) ∩ Φ(ψj) 6= ∅). (11)

That is, the set of M predicates does not satisfy property 9 because the resulting tasks are
not disjoint. It is possible to choose new predicates specifically designed to address the over-
lap, by replacing every two predicates ψx, ψy whose tasks overlap with three new predicates
φ(x,¬y), φ(¬x,y), φ(x,y):

φ(x,¬y)(s) = ψx(s) ∧ ¬ψy(s), (12)

φ(¬x,y)(s) = ψy(s) ∧ ¬ψx(s), (13)

φ(x,y)(s) = ψx(s) ∧ ψy(s). (14)

These new predicates split up states into those that only satisfy ψx, those that only satisfy ψy ,
and those that satisfy both.

If every state satisfies at least one of the initial M predicates, iterating this process creates
a set of predicates that generate disjoint tasks. If the thrashing rate between the resulting tasks
is sufficiently low, then they are interleaved.

However, such a proliferation of predicates ignores the fact that some states have properties
from multiple tasks. An alternative is to treat regions of intersection as blended regions between
tasks. This view allows a learning agent to focus on major distinctions between tasks rather
than micromanage different behaviors for many small but similar tasks. At least two semantic
predicates ψp, ψq that satisfy the following properties are required:

∃s ∈ S : (ψp(s) ∧ ¬ψq(s)), (15)

∃s ∈ S : (ψq(s) ∧ ¬ψp(s)), (16)

∃s ∈ S : (ψq(s) ∧ ψp(s)). (17)

In other words, the tasks defined by ψp and ψq are not disjoint, but neither is a subset of the
other. As a result, the states not in the intersection correspond to specific tasks, and the states in
the intersection are in the blended region between those two tasks.

In domains with blended tasks, it is important for an agent to decide what role to take on at
any given time. There may be clear goals in regions of a specific task, but in the blended region
there are often multiple competing goals. If an agent can discover its own task division, it can
more easily learn which goals to pursue in such regions. However, learning methods that easily
allow for different modes of behavior in different tasks are needed in blended, interleaved, and
isolated domains. Such methods are described next.

4 Learning Methods

Evolutionary multiobjective optimization is used to evolve controllers for MDPs with multi-
ple tasks. The evolved individuals are neural networks, and modular architectures are used to
encourage multimodal behavior.
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4.1 Evolutionary Multiobjective Optimization
Because different tasks can have different goals, domains requiring multimodal behavior may
have multiple objectives. Therefore, a principled way of dealing with multiple objectives is
needed. Such a framework is provided by the concepts of Pareto dominance and optimality1:

Definition 1 (Pareto Dominance) Vector ~v = (v1, . . . , vN ) dominates ~u = (u1, . . . , uN ) if
and only if the following conditions hold:

1. ∀i ∈ {1, . . . , N} : vi ≥ ui, and

2. ∃i ∈ {1, . . . , N} : vi > ui.

Definition 2 (Pareto Optimal) A set of points S ⊆ F is Pareto optimal if and only if it contains
all points such that ∀~x ∈ S: ¬∃~y ∈ F such that ~y dominates ~x. The points in S are non-
dominated, and make up the non-dominated Pareto front of F .

These definitions indicate that one solution dominates another if it is strictly better in at
least one objective and no worse in the others. The best solutions are not dominated by any other
solutions, and make up the Pareto front of the search space. The next best individuals are those
that would be in a recalculated Pareto front if the actual Pareto front were removed first. Layers
of Pareto fronts can be defined by successively removing the front and recalculating it for the
remaining individuals. Solving a multiobjective optimization problem involves approximating
the first Pareto front as best as possible. This paper accomplishes this goal using Non-dominated
Sorting Genetic Algorithm II (NSGA-II; Deb et al., 2002).

NSGA-II uses (µ + λ) elitist selection favoring individuals in higher Pareto fronts of the
current population over those in lower fronts. Within a given front, individuals that are more
distant from others in objective space are favored by selection so that the algorithm explores
diverse trade-offs.

Applying NSGA-II to a problem produces a population containing an approximation to
the Pareto front. This approximation set potentially contains multiple solutions. Usually, this
set must be analyzed to determine which solutions fulfill the needs of the user, but for the
domains in this paper (whose objectives are described in Section 5.2.2), a specific objective
weighting (based on Ms. Pac-Man game score) is available which reduces two objectives to a
single score. Evolution on this single objective could also be used, but optimizing with multiple
objectives instead of one is appealing because it can improve search by helping avoid local
optima (Knowles et al., 2001).

NSGA-II is indifferent as to how solutions are represented. This paper uses NSGA-II to
evolve artificial neural networks.

4.2 Neuroevolution
Neuroevolution is the simulated evolution of artificial neural networks. All behavior in this
paper is learned via a version of NEAT (Neuro-Evolution of Augmenting Topologies; Stanley
and Miikkulainen, 2002), a constructive neuroevolution method that has been successful in many
RL domains (Kohl and Miikkulainen, 2009; Stanley et al., 2006).

NEAT networks start with no hidden neurons, and are modified by three mutation opera-
tors during evolution. Weight mutation perturbs the weights of existing network connections,
link mutation adds new (potentially recurrent) connections between existing nodes, and node
mutation splices new nodes along existing connections. NEAT also features an efficient method
of topological crossover between networks.

1These definitions assume a maximization problem
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Every new link and neuron introduced by mutation is given a unique innovation number to
identify it. The genotype that encodes each neural network stores these innovations linearly in a
consistent order across all members of the population. This representation makes it easy to align
components with a shared origin within different genotypes, thus making crossover between
networks computationally efficient.

The variant of NEAT used in this paper is Modular Multiobjective NEAT2 (MM-NEAT;
Schrum and Miikkulainen, 2014), which distinguishes itself from NEAT by incorporating
NSGA-II, and providing several methods for creating networks with multiple output modules,
described next.

4.3 Modular Networks
MM-NEAT networks allow for multiple output modules. Each such module defines a differ-
ent control policy. Arbitration can be accomplished with a human-specified policy via Multitask
networks, or with a machine-discovered policy using preference neurons. When preference neu-
rons are combined with Module Mutation, evolution must also settle on an appropriate number
of modules. Each of these approaches is evaluated in this article.

4.3.1 Multitask Learning
Multitask networks were first proposed by Caruana (1993) for supervised learning using neural
networks and backpropagation. One network has multiple modules, and each module corre-
sponds to a different task (Fig. 1b). Each module is trained on data for its corresponding task,
but because hidden-layer neurons are shared by all outputs, knowledge common to all tasks can
be stored in the hidden layer. This approach speeds up supervised learning of multiple tasks (or
even just a single task of interest) because knowledge shared across tasks is only learned once,
rather than learned independently multiple times.

In the supervised learning contexts where Multitask Learning is commonly applied, even
when it is clear how to divide the tasks, it may be unclear which tasks are related enough to
benefit from sharing information. For this reason, methods have been developed to learn how
tasks should share information (Thrun and O’Sullivan, 1998; Kang et al., 2011).

Multitask Learning with neuroevolution has been previously applied to domains with iso-
lated tasks (Schrum and Miikkulainen, 2012). In such tasks, the evolving agents are always
aware of the task they currently face. Each network has a module for each task, and these mod-
ules are initially connected only to input neurons; the modules can share information if they
evolve to share hidden neurons.

Multitask Learning is a powerful technique, but the individual tasks need to be identified a
priori (the specific divisions used in Ms. Pac-Man are discussed in Section 5.2.3). Appropriate
task divisions are not always obvious, and obvious divisions may actually hurt learning. There-
fore, Multitask Learning will only be useful if its task division is appropriate. When tasks are
blended, it is hard to provide an appropriate division. To discover better task divisions, a means
of learning how to arbitrate between tasks is needed.

4.3.2 Preference Neurons
Preference neurons make module arbitration without a human-specified task division possible.
Each module has policy neurons for defining behavior and a preference neuron that outputs the
network’s preference for using that module’s policy neurons (Fig. 1c). Whenever inputs are
presented to the network, the module whose preference neuron output is highest specifies the
network’s output.

2Download at http://nn.cs.utexas.edu/?mm-neat. Download includes source code for all experiments
presented in this article.
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(a) Single-module Network

2 21 1

(b) Multitask Network (c) Preference Neuron Network

(d) Before Module Mutation (e) Module Mutation Duplicate

Figure 1: Modular Networks: These example networks are designed for a domain where two policy
neurons define the behavior of an agent. Inputs are at the bottom, and each output module is contained
in its own red box. (a) Standard neural network with just one module. (b) Multitask network with two
modules, each consisting of two policy neurons. A human-specified task division indicates when to use
Policy 1 vs. Policy 2. (c) A fixed network with two modules that uses preference neurons (colored gray)
to determine which module to use. (d) A starting network in a population where Module Mutation is
enabled. It has one module, and an irrelevant preference neuron. (e) After MM(D), the network gains a
new module with policy neurons linked to the same neuron sources with the same link weights as policy
neurons in the module that was duplicated. However, the new preference neuron is linked to a random
source with a random weight so that the new module is used in different situations. After MM(D), both the
pre-existing and newly added preference neurons become relevant. Extra modules allow these networks to
learn multimodal behavior more easily by associating a different module with each behavioral mode.

For example, assume a domain requires two outputs to designate the behavior of an agent,
and a network has two modules (Fig. 1c). Then the network has six outputs: two policy neurons
and one preference neuron for Module 1, and two policy neurons and one preference neuron for
Module 2. Whenever the output of Preference Neuron 1 is higher than the output of Preference
Neuron 2, the two policy neurons of Module 1 define the behavior of the agent. Otherwise, the
policy neurons of Module 2 are used.

Preference neurons partition the state space into one set per output module, though there
is no requirement that these sets are interleaved tasks in terms of the thrashing rate τ̄ between
them. However, preference neuron networks have the capacity to evolve such a task division if
it is useful.

This architecture assumes that a designer specifies the number of modules. However, evo-
lution can also discover how many modules are needed by adding modules gradually, using
Module Mutation.

4.3.3 Module Mutation
Module Mutation is any structural mutation operator that adds a new output module to a neural
network. An indefinite number of modules may be added in this way. Such networks depend
on preference neurons for module arbitration. New populations start with a single module and
a preference neuron that only becomes relevant after more modules are added (Fig. 1d). Each
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Module Mutation adds a new set of policy neurons and a new preference neuron.
Different versions of Module Mutation exist (Schrum and Miikkulainen, 2012, 2014). This

paper uses MM(D), for duplicate, because each new module duplicates the behavior of an ex-
isting module. For every link into a policy neuron in the original randomly chosen module, a
duplicate link into the corresponding policy neuron of the new module is created, and it has the
same source neuron and link weight as the link being copied (Fig. 1e). After MM(D), a network
will behave the same as before, but evolution can then modify the new structure, so that module
behavior diverges. However, links to the new module’s preference neuron are not copied from
the parent module. Rather, the new preference neuron has a single link with a random source
and weight, to encourage the module to be used in different circumstances.

MM(D) and the other modular approaches described so far are evaluated in domains with
isolated, interleaved, and blended tasks, as described next.

5 Experiments

The domains used for evaluation are three versions of the challenging classic video game Ms.
Pac-Man. This game requires multimodal behavior because enemy agents are sometimes threats,
and sometimes sources of points. Most of the modular architectures described above were ap-
plied to the original, blended version of Ms. Pac-Man (Schrum and Miikkulainen, 2014), in
which a mixture of edible and threat ghosts can be present at the same time. Later, an inter-
leaved version of the domain was introduced (Schrum and Miikkulainen, 2015), in which such
mixtures never occur. In this article, a new isolated version of the domain is introduced in which
ghost eating is completely isolated from pill eating. The results from the three versions provide
insight into when and why certain types of modular networks are successful. This section de-
scribes blended, interleaved, and isolated variants of Ms. Pac-Man, then describes experiments
in each version.

5.1 Ms. Pac-Man
Pac-Man (1980) and its sequel Ms. Pac-Man (1981) are among the most popular video games
of all time. Their gameplay is simple, yet requires complex strategies for success. A popular
platform for Ms. Pac-Man research is the simulator for the Ms. Pac-Man vs. Ghosts compe-
titions (Rohlfshagen and Lucas, 2011), which includes a standard Legacy ghost team that
approximates the original ghosts. Many forms of Artificial Intelligence have been applied to
versions of this simulator, including Neuroevolution (Lucas, 2005; Burrow and Lucas, 2009),
Temporal-Difference Learning (Burrow and Lucas, 2009), Game-Tree Search (Robles and Lu-
cas, 2009), Genetic Programming (Alhejali and Lucas, 2010, 2011; Brandstetter and Ahmadi,
2012), Monte-Carlo Tree Search (Samothrakis et al., 2011; Alhejali and Lucas, 2013; Pepels
et al., 2014), and Ant Colony Optimization (Recio et al., 2012).

The original version of Ms. Pac-Man has blended tasks because Ms. Pac-Man must deal
with being the predator and the prey at the same time. However, versions of the game with
interleaved and isolated tasks are developed for this article. This section first describes the
original, blended version of the game, and then describes the interleaved and isolated variants.

5.1.1 Blended Version
In Ms. Pac-Man, each of four mazes (Fig. 2) contains several pills and four power pills. Ms.
Pac-Man moves around, eating pills she comes in contact with, all of which must be eaten to
clear a level. Each pill earns 10 points, and each power pill 50 points.

Each maze starts with four hostile ghosts in a lair near the center of the maze. They come
out one by one and pursue Ms. Pac-Man according to different algorithms. If a ghost touches
Ms. Pac-Man, she dies and the episode ends. One ghost moves randomly, which is one source
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(a) Maze 0 (b) Maze 1 (c) Maze 2 (d) Maze 3

Figure 2: Ms. Pac-Man Mazes in the Interleaved and Blended Versions. The game of Ms. Pac-Man
consists of four mazes. Ms. Pac-Man starts in the lower center of each maze, and the ghosts start in the lair,
which is slightly above the center. At the start of each maze, all pills are present and available to be eaten
by Ms. Pac-Man. Power pills are located near the four corners of each maze. A maze is beaten once all
pills and power pills in a maze have been eaten. Though the general goals in each maze are the same, the
unique structure of each maze presents a unique challenge. Despite the different structures in each maze,
Ms. Pac-Man must learn behavior that generalizes across all four in order to succeed.

of non-determinism in the game. The other source applies to all ghosts: Normally, ghosts can
only go forward or turn left or right, but every time step there is a 0.15% chance that all ghosts
will randomly reverse direction. Such random reversals are unpredictable events that can either
help or harm Ms. Pac-Man.

Reversals also occur deterministically whenever Ms. Pac-Man eats a power pill, causing
ghosts to flee Ms. Pac-Man, because this event reverses the game dynamics for a limited time:
Ms. Pac-Man can eat the ghosts. The 1st, 2nd, 3rd, and 4th ghosts eaten in sequence are worth 200,
400, 800, and 1600 points, respectively. The maximum score is achieved by eating all four
ghosts after each power pill. This goal becomes more challenging in each subsequent level,
because edible time decreases as the level increases, but it is still achievable because edible
ghosts move at half speed.

The game has blended tasks because sometimes both threat and edible ghosts are in the
maze at the same time. After a ghost is eaten it returns to the lair for a short time before
reemerging as a threat, which can happen before the edible time has expired for the other ghosts.
Therefore, there are situations with both threat and edible ghosts, each at different positions
relative to Ms. Pac-Man, which put the competing goals of survival and ghost eating at odds
with each other. This set of states represents the blended region between the threat and edible
tasks.

In order to create an interleaved variant of this game, the blended region between tasks
must be eliminated.

5.1.2 Interleaved Version
If ghosts were always all edible or all threatening, this scenario would provide a clear example
of interleaved tasks: one task predicate satisfied when any ghost was edible, and the other when
any ghost was a threat. An upper bound on τ̄ for this interleaved version can be calculated by
realizing that each power pill can cause two task transitions: ghosts become edible, then go back
to being threats. Some amount of time has to pass before Ms. Pac-Man can reach a power pill,
and once she eats one she is guaranteed to survive for the entire edible time, which is 200 in the
first maze. Therefore, for every two task transitions, over 200 time steps must pass. Thus, an
upper bound for the thrashing rate is 2/200 = 0.01. This bound will hold despite the fact that
the edible time decreases to 145 by the fourth level. It takes over 1,000 time steps simply to eat
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all pills in one of the mazes, and dodging ghosts causes further delays. Therefore, the extra time
steps required to beat preceding levels more than cancels out the decrease in edible time in later
levels.

The game can be forced to have interleaved tasks by confining eaten ghosts to the lair until
either all ghosts have been eaten, or the edible time has expired. This change creates a new game
that is simpler than the original blended version, yet still an example of a challenging domain
with interleaved tasks.

This version is also similar enough to the original game that observing the comparative
performance of different types of modular policies can give insight into which methods are
appropriate for which types of task divisions. Each version requires multimodal behavior to
succeed, but the nature of the task divisions should be different.

Another way to evaluate and compare different modular policies is to change the nature of
the task division yet again, and create a version of the game with isolated tasks, described next.

5.1.3 Isolated Version

The interleaved version described above separates the domain into threat and edible tasks. How-
ever, both tasks still influence each other, and pills are present in both tasks. Because ghost score
can only be increased while ghosts are edible, this objective is associated with that task. In con-
trast, pills are always present and can always be eaten, though more are eaten during the threat
task, partly because ghosts are threats for the majority of evaluation.

When deriving isolated tasks from the original game, it is therefore reasonable to have
one task for eating ghosts and one for eating pills. Additionally, the ghost-eating task should
only feature edible ghosts, and the pill-eating task should only feature threat ghosts. These
considerations lead to the following isolated tasks.

The pill-eating task is like the original game, but without power pills. It is thus impossible
for threat ghosts to become edible, so Ms. Pac-Man can always treat the ghosts as threats. In
other words, within the pill-eating task, Ms. Pac-Man does not need a distinct mode of behavior
that handles edible ghosts.

This modification makes the game much more challenging, because there are particular
pills in each maze that are difficult to eat without the protection offered by a power pill. The
most prominent of these pills are those near power pills, because power pills are always located
near the corners of the maze. Without power pills it is dangerous for Ms. Pac-Man to trap herself
in a corner. Therefore, all pills on the same C-path (i.e. a path that connects two junctions and
contains no junctions; Ikehata and Ito, 2011) as a power pill are also removed from each maze
(Fig. 3). Removing this small number of pills slightly reduces the maximum possible pill score,
but also makes the task a more reasonable test of performance; without power pills, some of the
most dangerous-to-eat pills can only be safely eaten by going in circles and waiting for a random
ghost reversal to create an opportunity. The isolated pill-eating task removes many of these pills.
However, there are still several dangerous pills left, particularly in the 3rd maze (Fig. 3c), so this
task is very challenging.

In contrast, the ghost-eating task is now fairly easy. It is designed to faithfully capture
the focus of the ghost-eating task in the blended and interleaved versions. First all pills are
removed. Then, for each of the four power pills in each of the four mazes, Ms. Pac-Man starts
at the location of the power pill, as if she had just eaten it (Fig. 4). The ghosts are edible, and
Ms. Pac-Man has the usual amount of edible time available. As with the interleaved version,
eaten ghosts cannot exit the lair while other ghosts are still edible. However, the evaluation
ends as soon as the edible time runs out or all ghosts are eaten, which means Ms. Pac-Man will
never encounter a threat ghost in this task. Because this type of evaluation is repeated for each
of four power pill locations and each of four mazes, a single evaluation actually consists of 16
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Figure 3: Ms. Pac-Man Mazes in the Isolated Pill-Eating Task. The pill-eating task of the isolated
version is more challenging than the standard Ms. Pac-Man game because there are no power pills. Without
the temporary invulnerability and ability to eat ghosts offered by power pills, Ms. Pac-Man must be very
careful about when she approaches certain areas in each maze, because it is easy to be trapped by the
ghosts. To make the challenge level more reasonable, pills that were originally on the same C-path as
a power pill are removed. However, this simple fix still leaves some dangerous areas in certain mazes.
In particular, the unusual power pill placement in Maze 2 (Fig. 3c) means that there are still pills in the
lower corners. This maze also has dangerous pills in an area directly below Ms. Pac-Man’s starting point.
Therefore, very skilled behavior is required to clear all levels in the pill-eating task.

very quick evaluations whose scores add up. In fact, these 16 evaluations can be seen as 16 very
similar isolated tasks, but are grouped together and labelled as the ghost-eating task.

To make the isolated ghost-eating task as similar to the blended ghost-eating task as possi-
ble, the initial locations of the ghosts in each evaluation are chosen based on recordings of skilled
play in the blended version. Specifically, the best Ms. Pac-Man agent from the experiments in
the blended game described below (Section 5.3.1) was subjected to enough games to eat each
power pill at least 100 times. At each such event, the locations of the ghosts were saved, creating
a database of 100 entries for each maze and power pill. In the isolated ghost-eating task, each
time Ms. Pac-Man starts an evaluation, the ghost locations are initialized by randomly picking
one of the 100 possibilities corresponding to the current maze and starting power pill location.

Experiments are conducted in each of the three versions described to demonstrate how
different approaches to modular neuroevolution deal with different types of task divisions.

5.2 Experimental Setup
Neural networks are evolved in the manner described by Schrum and Miikkulainen (2014, 2015),
details of which are provided below.

5.2.1 Sensors
Networks are evaluated with sensor information corresponding to each available movement di-
rection on each time step in order to produce a single output value for each direction. Ms.
Pac-Man moves in the direction with the highest network output.

There are both direction-oriented sensors (Table 1) and sensors that are not direction-
oriented (Table 2), i.e. ones providing the same reading for each direction. Direction-oriented
distances measure the shortest path to objects of interest starting in a particular direction and
continuing without reversing. Distances have a maximum value of 200, and all sensors are
scaled to [0, 1].

Most direction-oriented sensors (Table 1) are similar to those of Brandstetter and Ahmadi
(2012), who used Genetic Programming to evolve Ms. Pac-Man agents. A notable exception
is the Options From Next Junction (OFNJ) sensor. OFNJ looks at the next junction in a given
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Figure 4: Ms. Pac-Man Mazes in the Isolated Ghost-Eating Task. Capturing edible ghosts is easy in
the isolated ghost-eating task. All ghosts start out edible, and Ms. Pac-Man is allotted the standard amount
of edible time to eat them. Ms. Pac-Man does not need to worry about dodging threat ghosts because
ghosts remain imprisoned in the lair after being eaten, and she does not need to lure ghosts near power pills
because ghosts start at locations taken from a database of situations experienced by a skilled Ms. Pac-Man
agent that does know how to lure ghosts. The database contains entries for each maze corresponding to the
four power pills in each maze, which are the locations that Ms. Pac-Man starts at in each evaluation. These
figures show her at the location of the upper left power pill of each maze. Notice that because of the skill
of the agent that established the database of ghost start locations, Ms. Pac-Man often begins evaluation
extremely close to edible ghosts, which makes eating them very easy. However, there are also situations
where a ghost starts far away from Ms. Pac-Man (Fig. 4c). These far ghosts can prevent an optimal agent
from attaining a perfect score, but very good scores are attainable despite this small amount of randomness.

direction, and counts the number of subsequent junctions that can be safely reached from the
first junction without reversing. The safety of a route can be determined by taking all agent
distances into account and conservatively assuming ghosts will follow the shortest path to the
target junction. Brandstetter and Ahmadi used a weaker version of this sensor that merely detects
whether an upcoming junction is blocked by a threat. OFNJ goes further by indicating whether
a ghost could reach the junction in question, which does a better job of helping Ms. Pac-Man
avoid death.

The remaining sensors are not direction-oriented (Table 2). Most of these undirected sen-
sors measure useful proportions. Sensing whether any ghost is edible indicates when some are
vulnerable, but does not provide information about any specific ghost. Awareness of threats and
nearby power pills (Alhejali and Lucas, 2010, 2011) is useful because it helps Ms. Pac-Man
optimize the timing of eating a power pill in order to maximize the number of ghosts eaten.

5.2.2 Evaluation
These sensors are used to evolve Ms. Pac-Man controllers with separate pill and ghost objectives.
The pill score is the number of pills eaten, including power pills. The ghost score gives points
proportional to the score that would be received for each ghost eaten: the 1st, 2nd, 3rd, and 4th

ghosts are worth 1, 2, 4, and 8 points, respectively. Evaluation in Ms. Pac-Man is noisy because
the ghost movement is non-deterministic, so each neural network is evaluated 10 times; fitness
scores are the average scores across evaluations. Although these objectives are used during
evolution, the final results are evaluated in terms of game score.

Because 10 evaluations take a long time to carry out, a limit of 8,000 time steps is imposed
for each maze, after which Ms. Pac-Man is killed (in the isolated version, this restriction applies
only to the pill-eating task). Furthermore, Ms. Pac-Man is given only one life, rather than the
usual three. The time limit discourages behaviors that stay alive a long time without making
progress, such as moving in circles while the ghosts chase from behind. This time limit is high
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Table 1: Directed Sensors in Ms. Pac-Man.
Sensor Name Description

Nearest Pill Distance Distance to nearest regular pill in given direction
Nearest Power Pill Distance Distance to nearest power pill in given direction
Nearest Junction Distance Distance to nearest maze junction in given direction
Max Pills in 30 Steps Number of pills on the path in the given direction that has the

most pills
Max Junctions in 30 Steps Number of junctions on the path in the given direction that has

the most junctions
Options From Next Junction Number of junctions reachable from next nearest junction that

Ms. Pac-Man is closer to than a threat ghost
nth Nearest Ghost Distance Distance to nth nearest ghost in given direction for n = 1, . . . , 4

nth Nearest Ghost Approaching? 1 if nth nearest ghost in given direction is approaching, 0 other-
wise, for n = 1, . . . , 4

nth Nearest Ghost Path Has Junctions? 1 if directional path to nth nearest ghost contains any junctions,
0 otherwise, for n = 1, . . . , 4

nth Nearest Ghost Edible? (blended version only) 1 if nth nearest ghost in given direction
is edible, 0 otherwise, for n = 1, . . . , 4

The maximum distance that can be sensed is 200. Higher distances, and distances to objects that are no
longer in the maze, are reduced to 200. All such distance sensor values are divided by 200 so that they are
confined to the range [0, 1]. The remaining sensors are similarly scaled to the range [0, 1] according to their
maximum values. These sensors are direction oriented, meaning that they can compute different values for
each direction. Distance measurements and object counts are made along the shortest path in the given
direction without reversing. Sensors referring to the nth Nearest Ghost are actually sets of four sensors,
one for each of the four ghosts sorted by their distance from Ms. Pac-Man along a directional path. The
last of these, nth Nearest Ghost Edible?, is only used in the blended version because it is unnecessary in the
interleaved and isolated versions: the undirected sensor Any Ghosts Edible? (Table 2) provides complete
information about edible ghosts instead, because if any ghost is edible in those versions, then all of them
are. Overall, the directed and undirected sensors provide a comprehensive view of the maze that makes it
possible for Ms. Pac-Man to make intelligent decisions.

Table 2: Undirected Sensors in Ms. Pac-Man.
Sensor Name Description

Bias Constant value of 1
Proportion Pills Number of regular pills left in maze
Proportion Power Pills Number of power pills left in maze
Proportion Edible Ghosts Number of edible ghosts
Proportion Edible Time Remaining ghost edible time
Any Ghosts Edible? 1 if any ghost is edible, 0 otherwise
All Threat Ghosts Present? 1 if four threats are outside the lair, 0 otherwise
Close to Power Pill? 1 if Ms. Pac-Man is within 10 steps of a power pill, 0 otherwise

All sensors that measure a proportion are scaled to the range [0, 1]. These sensors do not depend on
direction, so the same values will be returned for each potential movement direction on each time step.
They can only meaningfully influence direction preference when combined with direction-oriented sensors
(Table 1).

enough to not affect the champions by the end of evolution. Having a single life makes good
performance depend more strongly on skill than luck. Additionally, Ms. Pac-Man progresses
through each of the four mazes only once before evaluation is finished. Ms. Pac-Man revisits
mazes repeatedly in the commercial game, but this four-maze evaluation approach is less time
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consuming and has been used by others (Alhejali and Lucas, 2010, 2011).

5.2.3 Evolved Networks
In the blended, interleaved, and isolated versions of the game, populations of networks with one
module (1M), two modules (2M), and three modules (3M) are evolved. Modular networks use
preference neurons to decide which module to use on each time step. Populations that start with
one module, but can add more via MM(D), are also evaluated.

Multitask networks require human-specified task divisions. In the isolated version, the
Multitask (MT) approach has one module each for the ghost-eating and pill-eating tasks. The MT
approach also has one module per task in the interleaved game, in which the tasks are to deal
with edible and threat ghosts. In the blended game, two Multitask approaches are used. The
two module (MT2) approach uses one module when any ghost is edible, and another module
otherwise, and the three module (MT3) approach uses separate modules when all ghosts are
either threats or edible, and the third module when there is a mix of both types. MT3 treats the
blended region between tasks as its own task.

Populations of each type are evolved 30 times for 200 generations each, with a population
size of µ = λ = 100. The mutation rates are: 5% chance of weight perturbation per link, 40%
chance of a new link, and 20% chance of a new node. In MM(D) runs, Module Mutation is
applied to 10% of offspring. The crossover rate is 50%. These settings were chosen after initial
experimentation in the blended version of Ms. Pac-Man (Schrum and Miikkulainen, 2014), and
are used in all three versions of the game in this article. These settings lead to the results
described in the next section.

5.3 Results
In general, modular networks perform well in all three versions, particularly those with pref-
erence neurons, while 1M performs the worst. The degree to which the modular approaches
outperform 1M depends on the version of the game.

5.3.1 Blended Version Results
Fig. 5a shows that in the blended version, 2M networks are far superior to all other approaches.
The next best approaches are 3M and MM(D), which also use preference neurons. Both Multitask
methods (MT3 and MT2) are worse than the preference neuron approaches, and 1M is the worst
of all.

These results are statistically verified by post-learning evaluations of the champions from
each run. Each was evaluated 1,000 times in the game, and the resulting average scores
were compared. Applying the Kruskal-Wallis test to the results from post-evolution evalua-
tions indicates that there is a significant difference between at least two of the six methods
(H = 49.694, df = 5, N = 30, p ≈ 1.6× 10−9). Table 3 shows adjusted p-values for post-hoc
Mann-Whitney U tests. The results support the general conclusion that modular networks are
better than single-module networks. Additionally, preference neuron networks are better than
Multitask networks.

These post-learning evaluations also reveal the types of task divisions learned by each
champion. Average scores are plotted against the usage of the most used module in Fig. 5b.
Color-coded movies3 of the module usage are observed to determine the role of each module.

A common strategy is to dedicate one module to dealing with edible ghosts (roughly 25%
of the time) and another to threat ghosts (roughly 75%). The MT2 and MT3 task divisions
approximate this division in different ways (the 25% that MT3 dedicates to edible ghosts is split
across two modules). Some 2M, 3M, and MM(D) networks also learn a threat/edible strategy, but

3Available at http://nn.cs.utexas.edu/?blended-pm
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Figure 5: Results During Evolution and Post-Learning Evaluations For Blended Version. Median
champion scores across 30 runs of evolution are shown for the blended version in Fig. 5a. The 2M networks
are vastly superior to all others, but all modular approaches are superior to 1M. Post-learning evaluations
in the blended version are shown in Fig. 5b. Average scores of each champion across 1,000 evaluations
are plotted on the x-axis. The fact that these scores are lower than those achieved during evolution demon-
strates the impact of noisy evaluations. Although champions may achieve very high scores across ten
evaluations during evolution, evaluating the same champions 1,000 times provides a more accurate and
slightly lower score. The percentage of time steps that each champion used its most-used module across
all evaluations is plotted on the y-axis. The resulting clusters give insight into different levels of perfor-
mance achieved during evolution. The middle cluster (scoring between 8,000 and 15,000) corresponds
to champions using a threat/edible task division (threat module used roughly 75% of the time), while
the cluster in the top-right (scoring 16,000 to 20,000) corresponds to a luring strategy that depends on
an escape module (other module used over 95% of the time). The gap between threat/edible and luring
scores in the blended version is large, because of how important it is to discover custom task divisions
in a domain with blended tasks. Videos of each evolved behavior are available in the blended version at
http://nn.cs.utexas.edu/?blended-pm.

Table 3: Adjusted p-Values From Pairwise Mann-Whitney U Tests Comparing Post-Evolution
Blended Version Results.

1M MT2 MT3 MM(D) 3M
MT2 0.57789 - - - -
MT3 0.00245 0.24268 - - -

MM(D) 0.00164 0.03332 1.0 - -
3M 0.000015 0.00021 0.00679 1.0 -
2M 0.000011 0.00039 0.01638 1.0 1.0

The champion of each run of each method was evaluated after evolution in 1,000 further trials. Each
number is a p-value resulting from a two-tailed Mann-Whitney U test comparing two neuroevolution
methods, adjusted according to Bonferroni correction as performed by R. Values below 0.05 (bold) indicate
statistically significant differences. Methods are sorted from worst to best according to the order established
in Fig. 5a, which results in most significant differences clustering near the lower-left of the table. Except for
MT2, all modular approaches are better than 1M. All preference neuron approaches are significantly better
than MT2, and 2M and 3M are both significantly better than MT3. These results provide a deeper analysis
of champion performance than the results during evolution. The main result is that modular networks in
general and preference neuron networks in particular have an advantage over single-module networks.

preference neurons in the blended version do not switch modules as soon as ghost states change,
but switch modules strategically based on the number and proximity of ghosts of different types.
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(a) Blended: Escaping To
Power Pill

(b) Blended: After Eating
Power Pill

(c) Interleaved: Escaping to
Power Pill

(d) Interleaved: After Eating
Power Pill

Figure 6: Luring Behavior With an Escape Module in Blended and Interleaved Versions. (a) Ms.
Pac-Man waits at the junction for the ghosts to get close, then activates the escape module, which leads
her and the ghosts to the power pill. The maze cells in the upper left are shaded blue to indicate locations
in which the escape module was used. (b) After eating the power pill, Ms. Pac-Man quickly eats the
ghosts that were chasing her, then chases the remaining ghosts. The escape module is not used after
the power pill is eaten. An animation of this and other behaviors in the blended version can be seen at
http://nn.cs.utexas.edu/?blended-pm. (c) In the interleaved version, Ms. Pac-Man lures
and escapes in a similar fashion. (d) However, because eaten ghosts remain imprisoned while free ghosts
are edible, interleaved champions do not need to be as skilled at luring to get high ghost-eating scores.
In fact, even champions that do not lure at all can achieve high ghost scores, as seen in the videos at
http://nn.cs.utexas.edu/?interleaved-pm. In summary, the very best champions in both
versions use an escape module for luring. Though it is rarely activated, half of the network’s neural
resources are dedicated to this module because luring is only effective if Ms. Pac-Man can successfully
escape the surrounding threats to reach a power pill, which in turn leads to the highest scores.

Sometimes, these networks will even thrash back and forth between modules as they dodge
threat ghosts until they find an opening to chase an edible ghost.

There is another, surprising strategy that proves vital in the blended version (Figs. 6a
and 6b). Only networks using preference neurons can develop it, because it involves a task
division that is not obvious: Networks use one module about 95% of the time to deal with threat
and edible ghosts, but the remaining 5% dictates what Ms. Pac-Man does when surrounded by
threat ghosts. Specifically, the most-used module eats pills while threat ghosts chase her, but
sometimes the ghosts surround Ms. Pac-Man. At this point, the least-used module kicks in to
help Ms. Pac-Man escape. Often this behavior happens near a power pill, which then makes
it easy for Ms. Pac-Man to first eat the power pill, and then all ghosts. The overall behavior
learned is thus a luring behavior, and it greatly increases the ghost score. This behavior is vital
in the blended version, as demonstrated by the large score gap between luring networks and
threat/edible networks.

A final curious result is that preference neuron networks rarely make use of three or more
modules. In particular, it is not clear why 3M or MM(D) networks do not develop a luring
strategy with the most-used module split up into one module for edible ghosts and one for threat
ghosts. The 3M networks evolve to ignore one module, and MM(D) networks either stop adding
modules beyond the second, or mostly ignore their few additional modules. Of course, even
though a three-module division seems to make sense from a human perspective, the successful
two-module luring networks show that it is not necessary. The luring networks with just two
modules are apparently easier for evolution to discover than networks that behave similarly,
but have more modules, possibly because of the extra coordination effort required. In fact, the
ability of a single module to both dodge threats and eat edible ghosts indicates the presence two
separate modes of behavior, even though there are no distinct modules for each mode. Multiple
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Figure 7: Results During Evolution and Post-Learning Evaluations For Interleaved Version. Median
champion scores across 30 runs of evolution are shown for the interleaved version in Fig. 7a. Interleaved
scores are generally higher than in the blended version because the interleaved version is easier. However,
all modular approaches achieve scores much higher than 1M. There is no longer a large distinction between
Multitask and preference neuron approaches; all do well in the interleaved game. However, distinct behav-
iors are still learned by different approaches, as shown by the analysis of post-learning evaluations shown in
Fig. 7b. The middle cluster (scoring 13,000 to 19,000) still corresponds to champions using a threat/edible
task division, and the top-right cluster (scoring 20,000 to 26,000) still corresponds to a luring strategy with
an escape module. However, the gap between threat/edible and luring scores in the interleaved version is
smaller than the corresponding gap in the blended version, which reveals that discovering a custom task di-
vision with preference neurons is not as important in the interleaved version. Videos of each evolved behav-
ior are available in the interleaved version at http://nn.cs.utexas.edu/?interleaved-pm.

behavioral modes can exist in a single module.
The results above show why modular networks with preference neurons are so important

for domains with blended tasks, but the comparative performance of these methods in the inter-
leaved version are slightly different, as described next.

5.3.2 Interleaved Version Results
Fig. 7a shows how in the interleaved version, 2M, 3M, MM(D) and MT all quickly achieve higher
scores than 1M. In the final generation, each of these modular approaches still has much higher
scores than 1M.

As with the blended results, post-learning evaluations show that these differences are statis-
tically significant. After 1,000 evaluations for each champion, the average scores were compared
with the Kruskal-Wallis test, showing that there is a significant difference between at least two
of the five methods (H = 37.0228, df = 4, N = 30, p ≈ 1.78× 10−7). Table 4 shows adjusted
p-values for post-hoc Mann-Whitney U tests. The results make it clear that in the interleaved
version, all modular approaches are better than 1M, but none are different from each other.

Analyzing the module usage of evolved champions in post-evaluations (Fig.7b) reveals
that similar behaviors emerge, but the relative effectiveness of certain strategies is different. The
highest scores are still earned by networks that use preference neurons in conjunction with an
escape module to exhibit luring behavior. Having distinctive modules for edible and threat tasks
is also common, and is achieved by representatives of all modular approaches. However, the
interleaved version differs from the blended version in that threat/edible strategies earn higher
scores. Specifically, the gap between threat/edible and luring champion scores is smaller in
the interleaved version, and the gap between threat/edible strategies and most 1M champions
is larger. In the blended version, threat/edible scores mostly overlap with 1M scores, which is
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Table 4: Adjusted p-Values From Pairwise Mann-Whitney U Tests Comparing Post-Evolution In-
terleaved Version Results.

1M MT MM(D) 3M
MT 0.0000035 - - -

MM(D) 0.00011 1.0 - -
3M 0.0000031 1.0 1.0 -
2M 0.00000092 1.0 1.0 1.0

Interleaved champions were also evaluated in 1,000 additional trials after evolution had finished, and the
results of pairwise Mann-Whitney U tests are shown in this table as in Table 3. In the interleaved version,
all modular approaches are significantly better than 1M, but none are significantly different from each other.
This contrast with the blended results demonstrates how a domain with a clear, interleaved task division
can be handled with a wider variety of modular approaches.

why luring is so important in that version. However, all modular approaches do well in the
interleaved version because the clear task boundaries make it easier to apply multiple modules
effectively.

Movies of behaviors in the interleaved version4 demonstrate that multiple modules can
easily be used effectively without needing any complicated reasoning about mixtures of threat
and edible ghosts. Networks using a threat/edible strategy simply use the module that matches
the current state of the ghosts, without needing to have special reasoning to handle a blended
region between tasks. It is also easier to have an effective luring strategy, because threat ghosts
do not re-emerge from their lair to harass Ms. Pac-Man as she tries to eat the last edible ghost(s)
(Figs. 6c and 6d).

Overall, these results indicate that while human-specified and machine-learned task divi-
sions can both handle the interleaved version well, human-specified task divisions have difficulty
with blended tasks.

Because isolated tasks are more clearly divided than interleaved tasks, all modular ap-
proaches, including human-specified ones, generally work well in the isolated version too, as
explained next.

5.3.3 Isolated Version Results
Fig. 8a shows how the median level of performance for each method reaches roughly the same
level by 200 generations. However, all modular approaches are superior to 1M early in evolution.
All scores are in a high but narrow score range because all methods quickly master the relatively
easy ghost-eating task. The methods differ in the pill-eating task, which is harder than the
original blended version of the game.

The plot of median scores throughout evolution indicates that, in the end at least, there is not
much difference between methods. However, when analyzing post-learning evaluations of the
champions (Fig. 8b), the Kruskal-Wallis test shows that there is a significant difference between
at least two of the five approaches (H = 12.5529, df = 4, N = 30, p ≈ 0.01368). Yet again, no
specific difference between methods could be confirmed with post-hoc Mann-Whitney U tests
(Table 5).

However, despite the similar scores, champions with multiple modules are still the best.
This result is confirmed in videos of the evolved behaviors5. Moreover, even without power
pills to lure ghosts towards, networks with an escape module are still the most successful. The
escape module is rarely used in the first maze, because the removal of pills that were near a
power pill make this maze easy to clear. The escape module is more useful in the second maze,

4Available at http://nn.cs.utexas.edu/?interleaved-pm
5Available at http://nn.cs.utexas.edu/?isolated-pm
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Figure 8: Results During Evolution and Post-Learning Evaluations For Isolated Version. Median
champion scores across 30 runs of evolution are shown for the isolated version in Fig. 8a. The range of
scores is very narrow because eating ghosts is much easier in the isolated version. The methods primarily
differ in the pill-eating task, which has less of an impact on game score. Nevertheless, all modular ap-
proaches have a clear advantage over 1M early in evolution, because they can easily dedicate a separate
module to each task. However, most 1M runs do eventually find a way to achieve performance comparable
to the modular methods (note that only the median performance is plotted). Post-learning evaluations of
the champions (Fig. 8b) indicate that there are still several low-scoring 1M networks, and that modular
champions form the usual clusters. There is a large cluster (scoring 41,000 to 43,500) that uses its primary
module around 70% of the time to handle the pill-eating task, and its second module in the ghost-eating
task. There is also a cluster of modular champions in the upper right (scoring 43,000 to 45,000) that uses
its primary module over 95% of the time. This primary module is used in the ghost-eating task, and in the
majority of the pill-eating task. The second module is an escape module, as in the blended and interleaved
versions. However, since there are no power pills, the escape module does not help Ms. Pac-Man set up a
chance to eat ghosts. The escape module is used purely to escape dangerous situations, but this ability ends
up being very important in the challenging pill-eating task. There are also a small number of preference
neuron networks with three modules (scoring 43,500 to 45,000) that have an escape module, as well as
separate pill-eating (primary module used around 70% of the time) and ghost-eating modules. Intelligent
use of three modules is impressive, but ultimately unnecessary, as these scores are not better than cham-
pions with just an escape module and one other module. Videos of each evolved behavior are available in
the isolated version at http://nn.cs.utexas.edu/?isolated-pm.

Table 5: Adjusted p-Values From Pairwise Mann-Whitney U Tests Comparing Post-Evolution Iso-
lated Version Results.

1M MT MM(D) 3M
MT 1.0 - - -

MM(D) 0.699 1.0 - -
3M 0.110 0.571 1.0 -
2M 0.080 0.055 1.0 1.0

Isolated champions were also put through 1,000 post evaluations, and the results of pairwise Mann-
Whitney U tests are shown in this table as in Tables 3 and 4. In the isolated version, no significant differ-
ences are detected via Mann-Whitney U tests, despite the significant difference detected by the Kruskal-
Wallis test. However, even without a significant difference in scores, there is a difference in how champions
of each method behave and use modules.

and vital in the third maze, which contains three extremely dangerous areas near the bottom of
the maze. The fourth maze is also challenging, but not as much as the third maze.

Fig. 9 shows one of the rare champions that make intelligent use of three modules: one for
escape in the pill-eating task, one for all other situations in the pill-eating task, and one for the
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(a) Isolated: Primary Pill
Task Module

(b) Isolated: Escape Module (c) Isolated: Ghost Task
Module

Figure 9: Intelligent Use of Three Modules in the Isolated Version of Ms. Pac-Man. These figures
show the behavior of an MM(D) champion with three modules. Each module has a different color trail
associated with it. (a) For the majority of the pill task, the green module controls Ms. Pac-Man and leads her
to navigate the maze and eat pills. (b) However, there are dangerous situations where the default behavior
is not good enough. The blue escape module activates to help Ms. Pac-Man make decisions when she is
nearly trapped. (c) A separate red module is used to eat ghosts in the ghost task. This champion is a rare
instance of a network that intelligently uses three modules. It earns high scores, though not any better than
two-module champions that use an escape module. The key to high scores is the escape module. Learning
to use the other module for both pill and ghost eating is apparently not difficult. A video of this behavior
and others in the isolated version can be seen at http://nn.cs.utexas.edu/?isolated-pm.

ghost-eating task. Only one MM(D) champion and two 3M champions use three modules in this
manner, but they are among the best networks.

Learning a module division that splits up the pill-eating and ghost-eating tasks is also com-
mon, though not as effective despite the fact that the tasks are completely isolated. The reason
that one module per task it not enough in most cases is that the pill-eating task is so much harder
than the ghost-eating task. Dedicating half of the network’s neural resources to it is generally not
effective. However, there are exceptions. All MT networks are forced to use a human-specified
task division, yet the two highest scoring MT champions have scores comparable to modular
approaches using an escape module. The best 1M champions also have scores in this range,
though the majority of 1M champions score much lower. Discovering multimodal behavior is
thus possible within a single module, but is much easier to do with multiple modules.

6 Discussion and Future Work

Similar behaviors were developed in all three versions of Ms. Pac-Man, but the performance of
the methods differs.

Using an escape module leads to the best scores in all versions. In the interleaved and
blended versions, the escape module helps Ms. Pac-Man avoid death, but it is also vital in
allowing her to eat power pills at the best possible time so that she can eat as many ghosts as
possible. In the isolated version, the escape module is still important, even without power pills:
It helps Ms. Pac-Man survive the very difficult pill-eating task. Only networks with preference
neurons could use an escape module, because such a task division was not human-specified, but
rather discovered by evolution.

A threat/edible division was commonly discovered, but its effectiveness varied across
versions. It is always less effective than using an escape module. In the blended version,
threat/edible divisions overlap substantially with poor 1M results. Threat/edible divisions are
more effective in the interleaved version, and are clearly superior to poor 1M results. Because
all ghosts are edible at the same time, advanced planning is not needed to assure that ghosts are
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eaten before threats return. Threat/edible divisions are also effective and superior to poor 1M
results in the isolated version. However, there are fewer poor 1M results in the isolated version
than in the other versions, because the ghost-eating task is so easy.

Threat/edible divisions can be discovered by evolution via preference neurons, but are also
used by Multitask networks. This human-specified task division is a natural choice for the
isolated version, because one module is dedicated to each of the isolated tasks, which are defined
according to Section 3.2. This division also fits well in the interleaved version, whose tasks fit
the definition in Section 3.3, because the decision of which module to use can be simply based on
whether the ghosts are edible: Ms. Pac-Man pursues edible ghosts and flees threat ghosts. The
threat/edible division is less well suited to the blended version, because it is not obvious which
states in the blended region between tasks should be associated with each module. The three-
module Multitask approach assigns a module to the blended region between tasks, as suggested
by the predicate of equation 14 in Section 3.4, but this approach is inferior to the custom division
discovered by evolution. With both threat and edible ghosts, it is more intelligent to make a
decision about which module to use based on how close the different types of ghosts are in each
direction. Regardless of which module is chosen, Ms. Pac-Man still needs to deal with ghosts
of both types.

These results show that learning multimodal behavior is easier when multiple modules are
available. However, a few 1M champions did exhibit some form of multimodal behavior as well.
In many cases, the powerful OFNJ sensor makes this possible. Avoiding a particular action
based solely on this sensor allows Ms. Pac-Man to have a mode of behavior that keeps her alive.
If a preference for pill eating is learned on top of this basic skill, then Ms. Pac-Man has at least
a decent chance of clearing several mazes. In other words, good sensors can make it possible
to learn multiple modes of behavior within a single module, but the specific behavioral modes
that can be learned depend on the specific sensors available. In addition, modular networks that
in principle can include three or more modules settle on two modules because one module can
both avoid ghosts and eat pills. Some modules contain multiple modes of behavior while others
contain just one.

Both of these basic behaviors are required in the pill-eating task of the isolated version.
This task is completely isolated from the ghost-eating task, yet pill-eating and ghost-avoidance
behaviors are actually blended inside the pill-eating task. One of the isolated tasks is itself a
blended domain, despite having only one fitness objective (pill score). However, the boundary
between these pill-eating and ghost-avoidance tasks is even less clear than the boundary between
threat and edible tasks in the blended version of the game. As a result, evolution must discover
when Ms. Pac-Man is threatened enough to use a different mode of behavior. The threat ghost
subtasks of the interleaved and blended versions also consist of these blended tasks. This obser-
vation implies that the formalism described earlier in the article is in fact hierarchical: isolated
tasks can be interleaved or blended domains, and interleaved tasks can be blended domains.

This hierarchy is likely the reason why allowing evolution to discover its own task division
using preference neurons was the most successful in each version of the game. Only preference
neurons could assign an escape module to the escape task that was blended into each version.
This ability imparts a slight but noticeable score boost in the isolated and interleaved versions,
but is essential in the blended version.

In fact, the luring behavior that results from having an escape module allows ghosts to
be quickly eaten once they become edible, which means that a mix of threat and edible ghosts
is encountered less often; luring agents spend less time in the blended region between tasks.
In other words, evolution discovered a task division that makes the blended version behave
more like an interleaved domain, which makes Ms. Pac-Man more successful. In the blended
version—the standard Ms. Pac-Man—the scores achieved by the luring strategy are better than

Evolutionary Computation Volume x, Number x 25



J. Schrum and R. Miikkulainen

those achieved by other techniques, such as Genetic Programming (Alhejali and Lucas, 2010;
Brandstetter and Ahmadi, 2012), Monte-Carlo Tree Search (Alhejali and Lucas, 2013), and Ant
Colony Optimization (Recio et al., 2012); see Schrum and Miikkulainen (2014) for a detailed
comparison.

The results in this paper show how the choice of a learning technique should fit the type of
task division. Human-specified task divisions, such as those employed by Multitask networks,
are good at splitting up isolated and interleaved domains, but do not handle blended tasks well.
Furthermore, if blended subtasks are embedded within an isolated or interleaved task, a Multi-
task division will have trouble recognizing and handling those subtasks. Of course, if Multitask
networks were explicitly programmed to dedicate a module to escaping, then they could perhaps
achieve similar success. Note, however, that use of an escape module is not immediately obvi-
ous, nor is it clear how to implement precisely when it should activate: the factors that influence
it include how close the ghosts are, as well as the number and safety of available junctions in all
four directions.

It might be possible to exploit the hierarchical nature of task divisions with a hybrid method
that involves both human encoding and machine discovery. One could evolve networks that
have distinct groups of modules arbitrated by preference neurons, but that arbitrate between
groups through a human-specified task division. Once the human-specified division had chosen
a group of sub-modules, preference neurons would determine which specific module is used.
This approach would likely be most effective if the human-specified division functioned at a
high, clearly defined level, such as between isolated or interleaved tasks, and preference neurons
were allowed to handle the blended tasks. However, even splitting up different types of blended
tasks with a mixture of human-specified and machine-discovered divisions could be useful. For
example, a human could split the blended version based on threat and edible ghosts, and then
leave discovery of an escape module within the task with threat ghosts to preference neurons.

Such an approach may be necessary for tasks that are more complex than Ms. Pac-Man. In
fact, although many domains can be described with the formalism of Section 3, it may need to
be extended to describe more complex domains. For example, a first-person shooter game like
Unreal Tournament 2004 clearly has blended tasks, but the level of blending is so intense—an
agent may shoot while retreating and also seeking a health item—that the state space is like a
mosaic of tasks with different levels of blending. The methods of this article may well work in
such a domain, but one could imagine that the hierarchical extensions described thus far, and
others not yet considered, may be necessary to achieve good performance in such domains.

Regardless, this paper not only reaffirms that letting evolution discover its own task divi-
sions is a promising technique for domains with multiple tasks, but also identifies properties of
domains that make different modular architectures more likely to succeed.

7 Conclusion

This paper demonstrates how behavior can be divided effectively into separate tasks in sequen-
tial decision-making problems. Three kinds of domains were identified—isolated, interleaved,
and blended—and modular neuroevolution techniques were used to solve them. The results in
three versions of Ms. Pac-Man showed that while human-specified task divisions work well in
isolated and interleaved domains, they are difficult to properly specify for blended domains.
Evolution discovered the best behavior in all three domains with the use of preference neurons,
which makes machine discovery of multimodal behavior a promising approach to challenging
sequential decision-making problems.
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