
Solving Interleaved and Blended Sequential
Decision-Making Problems through Modular

Neuroevolution

Jacob Schrum
Dept. of Mathematics and Computer Science

Southwestern University
Georgetown, TX 78626 USA

schrum2@southwestern.edu

Risto Miikkulainen
Department of Computer Science
The University of Texas at Austin

Austin, TX 78712 USA
risto@cs.utexas.edu

ABSTRACT
Many challenging sequential decision-making problems require
agents to master multiple tasks, such as defense and offense in
many games. Learning algorithms thus benefit from having sep-
arate policies for these tasks, and from knowing when each one
is appropriate. How well the methods work depends on the na-
ture of the tasks: Interleaved tasks are disjoint and have differ-
ent semantics, whereas blended tasks have regions where seman-
tics from different tasks overlap. While many methods work well
in interleaved tasks, blended tasks are difficult for methods with
strict, human-specified task divisions, such as Multitask Learning.
In such problems, task divisions should be discovered automati-
cally. To demonstrate the power of this approach, the MM-NEAT
neuroevolution framework is applied in this paper to two variants
of the challenging video game of Ms. Pac-Man. In the simpli-
fied interleaved version of the game, the results demonstrate when
and why such machine-discovered task divisions are useful. In the
standard blended version of the game, a surprising, highly effec-
tive machine-discovered task division surpasses human-specified
divisions, achieving the best scores to date in this game. Modular
neuroevolution is thus a promising technique for discovering mul-
timodal behavior for challenging real-world tasks.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Applications and Expert Systems—
Games; I.2.6 [Artificial Intelligence]: Learning—Connectionism
and neural nets

Keywords
Games, Neural networks, Multi-objective optimization

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’15, July 11 - 16, 2015, Madrid, Spain
c© 2015 ACM. ISBN 978-1-4503-3472-3/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2739480.2754744

1. INTRODUCTION
Discovering intelligent agent behavior automatically for com-

plex environments is an important goal for Artificial Intelligence.
Such behavior is needed in both real-world robots and virtual envi-
ronments. However, most interesting domains consist of multiple
tasks, each requiring different behavior. Such behavior is multi-
modal, because distinct behavior is required in each task. Learning
such behavior is difficult, and even harder when individual tasks
overlap.

This paper presents a new way of identifying tasks for complex
domains, and applies several methods of constructing modular poli-
cies for such domains using evolved neural networks (i.e. neuroevo-
lution). Tasks are defined by partitioning the state space such that
the frequency of transitions between tasks is low. This approach is
then complimented by using domain semantics to define predicates
(based on high-level domain features) that identify each task.

When distinctions between tasks are clear, the tasks are inter-
leaved. A learning agent can then split up a domain by dedicating
separate policies to each task. When distinctions are not clear, the
tasks are blended. In such domains, it is sensible to identify the
prominent tasks, and treat the domain as a blend of these represen-
tative tasks. However, to succeed in such domains, agents need the
freedom to discover their own task divisions.

This paper builds on recent research in Ms. Pac-Man using
evolved neural networks [24]. To support multiple tasks, networks
have separate output modules to represent different behaviors. Pre-
vious research required evolution to discover how to use these mod-
ules, but this paper also allows a human designer to specify how
modules are used in each task, in a style similar to Multitask Learn-
ing [7]. This extension makes it possible to identify the costs and
benefits of discovering task divisions automatically. Another new
contribution is that these methods are compared not only in the
original Ms. Pac-Man, where the tasks are blended, but also in an
interleaved version of the game. This extension makes it possible
to determine where each approach is most effective.

The conclusion is that while a variety of approaches work well in
the interleaved version, agents in the original blended version need
the freedom to discover their own task division in order to succeed.
When given such freedom, the most effective task divisions discov-
ered are sometimes surprising: A luring strategy is learned, which
uses one module to gather all ghosts close together, so that another
module can quickly escape to a power pill, allowing the first mod-
ule to easily capture the ghosts. Such a task division is not obvious
to a human designer a priori, demonstrating the power of the mod-
ular neuroevolution approach.

In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO

2015), pp. 345--352, Madrid, Spain, July 2015. Best Paper: Digital

Entertainment and Arts.

2. RELATED WORK
Domains requiring multimodal behavior are common in both

robotics and simulated environments, and various approaches have
been implemented to deal with such domains.

For complex tasks, it is common to combine controllers into a
hierarchy. Such hierarchies can be hand-designed [5] or learned.
For example, Togelius’s [31] evolved subsumption architecture was
used in EvoTanks [30] and Unreal Tournament [32], and Stone’s
[27] Layered Learning was applied to RoboCup Soccer. Recently,
Lessin et al. [18] used a human-designed hierarchical syllabus to
evolve complex behavior for virtual creatures. Though effective,
these approaches require a programmer to divide the domain into
constituent tasks and develop effective training scenarios for each.

Hierarchical Reinforcement Learning (HRL) also produces hi-
erarchical controllers consisting of multiple sub-controllers. Early
HRL research required the hierarchy to be human-specified [10],
but methods now exist for learning it as well [11]. Most HRL
techniques are based on the formalism of Semi-Markov Decision
Processes (SMDPs), which was first used to develop partial control
policies called options [29]. Similar techniques, e.g. skills [16] and
activities [3], also fit this formalism. The methods in this paper can
also be cast in the SMDP formalism, but they do not depend on it.
Therefore, a simpler formalization is presented in the next section.

Several evolutionary approaches to learning multimodal behav-
ior simply focus on discovering modular policies. One approach is
to associate components of the architecture automatically with spe-
cific functionality. For instance, Calabretta et al. [6] evolved neu-
ral networks to control robots using a duplication operator, which
copies one output neuron with all of its connections and weights.
The network then has two outputs for the same actuator, and needs
to arbitrate between them. Such arbitration is performed by selector
units: For each actuator, the output neuron with the highest corre-
sponding selector unit activation controls the actuator for that time
step.

A similar approach is Module Mutation [23, 24], which intro-
duces groups of neurons rather than individual neurons. A single
Module Mutation adds enough output neurons to define a new pol-
icy, plus an additional neuron to arbitrate between modules. The
behavior-defining neurons are called policy neurons, and the one
arbitration neuron per module is called a preference neuron. Prefer-
ence neurons are similar to the selector units of Calabretta et al. [6].
Since Module Mutation is used in this paper, it is discussed further
in Section 4.3 on learning methods.

Other researchers have developed modular networks with a more
general concept of a module [8, 13], i.e. a cluster of interconnected
neurons with few connections to neurons in other clusters. Such
modular networks can also be created using generative and devel-
opmental methods [19, 33, 12]. These methods evolve modular
neural networks assuming that having different modules handle dif-
ferent parts of the task makes optimization easier. Compared to
these approaches, the modular networks of this paper create clear
task divisions in which it is always known which module is respon-
sible for an agent’s actions.

Modular policies have also been explored in Genetic Program-
ming (GP). An early example is Koza’s Automatically Defined Func-
tions [17], which encapsulate portions of a program tree that can
potentially be reused. A similar GP technique is Adaptive Rep-
resentation through Learning [22], which culls modules from pro-
gram trees based on differential parent/child fitness.

All of these techniques face the same challenge of having to
break a domain into separate tasks. The next section presents a
new way of identifying tasks within a domain.

3. TASK DIVISIONS
This section first describes the Markov Decision Process (MDP)

formalism that is the basis of Reinforcement Learning (RL) prob-
lems [28]. This formalism is then used to specify a way of identify-
ing individual tasks. The nature of the task division is used to dis-
tinguish between domains where tasks are interleaved vs. blended.

3.1 Markov Decision Process
An MDP is a formal description of a domain in terms of the

results of taking certain actions in certain states. Specifically, an
MDP is a tuple (S,A,P,R), where S is the state space, A is the
set of actions,P is the transition function, andR is the reward func-
tion. The transition function is defined asP : (S×A×S)→ [0, 1]
where P(s, a, s′) returns the probability of reaching state s′ im-
mediately after performing action a in state s. The reward func-
tion provides the agent with feedback on how well it is performing.
Typical RL formulations use scalar rewards, butR can be extended
to multiple objectives: R : (S × A) → RN is defined such that
R(s, a) returns a tuple of the expected immediate rewards in each
objective for performing action a in state s. This tuple has length
N , the number of objectives.

The commonly used discount factor γ is excluded from this def-
inition because only episodic domains are considered in this paper.
As a result, the goal of an agent is to maximize the sum of rewards
in each objective throughout the course of an episode. An episode
is an evaluation period with definite start and end points, which al-
lows rewards to be safely weighted equally without emphasizing
early rewards in favor of later rewards [28]. For use in an evolu-
tionary algorithm, the sum of rewards in each objective is treated as
a different fitness function subject to multiobjective optimization.

The next sections use this definition of MDPs to explain the con-
cepts of interleaved and blended tasks.

3.2 Interleaved Tasks
A collection of T interleaved tasks for an MDP is defined as a

partition of its state space {S1, . . . ,ST }. By the definition of a
partition, S is the union of these sets, which are pairwise disjoint:

S =

T[
i=1

Si and (1)

∀i, j ∈ {1, . . . , T}(Si = Sj ∨ Si ∩ Sj = ∅). (2)

Importantly, each state is in exactly one task because all tasks cover
S, but are disjoint from each other. However, not all partitions are
meaningful. For the concept of interleaved tasks to be useful, an
agent should mostly remain in each task for an extended period be-
fore switching to another, so that its actions can have a useful im-
pact in each task. In other words, the proportion of task switches to
total time spent in the domain should be small. A low rate of thrash-
ing back and forth between tasks indicates that a domain consists
of a few important tasks that partition the state space. Of course,
frequency of task switches also depends on a policy π : S → A
(assuming the policy is deterministic), but because state transitions
are stochastic, even the policy does not completely dictate which
states are visited. The sequence of states visited within an episode
determines the number of task transitions it contains. Therefore, an
episode e consisting of m states can be defined as the sequence of
visited states s1, s2, . . . , sm. Given this definition of an episode,
the thrashing rate τe of episode e is defined as

τe = xe/m, (3)

where xe is the number of task transitions in e. The number of task
transitions can be formally defined as the cardinality, or size, of the

set of states in the episode where the next state is in a different task:

xe = |{si|si ∈ Sj ∧ si+1 ∈ Sk ∧ j 6= k}|, (4)

where i ∈ {1, . . . ,m− 1}, and therefore refers to any state before
the last state, and j, k ∈ {1, . . . , T}, so that each refers to one of
the T tasks in the MDP. In other words, each time adjacent states
of the episode are in different tasks, one task transition is tallied.
From τe, the domain’s thrashing rate τ̄ is defined as the average
τe across all possible e. For a domain to have distinct interleaved
tasks, τ̄ must be low.

Calculating τ̄ may not be possible, but a rough estimate is enough
to determine whether a partition of the state space creates inter-
leaved tasks. The lower τ̄ is, the more likely a domain can be use-
fully labelled as having interleaved tasks. The interleaved domain
used in this paper has a thrashing rate less than 0.01, as will be
explained in Section 5.1.

Although the thrashing rate provides a way of identifying the
states in each task, the intuitive notion of a task is that each one has
some distinct semantic properties that are clear to someone who
understands the domain. In a domain with interleaved tasks, some
obvious set of semantic properties should correspond to the struc-
turally defined tasks that result in a low τ̄ . Each task should have
a predicate that is true for all states in that task, and false for all
other states. Formally, ψ1, . . . , ψT : S → {>,⊥} are semantic
predicates for the T tasks in the MDP for which each state satisfies
one and only one semantic predicate:

∀i ∈ {1, . . . , T}∀s ∈ Si(ψi(s) = >) and (5)

∀i, j ∈ {1, . . . , T}∀s ∈ Si(i 6= j → ψj(s) = ⊥). (6)

These predicates allow any task i to be defined as the subset of
S that satisfies ψi: For any predicate on states ψ : S → {>,⊥},
define that predicate’s task as the set of states that satisfy it:

Φ(ψ) = {s ∈ S|ψ(s) = >}. (7)

For the set of predicates above that satisfy properties 5 and 6,
Φ(ψi) = Si for all i ∈ {1, . . . , T}. Generally, an initial guess at
suitable predicates should lead to the desired low thrashing rate.

However, predicates with properties 5 and 6 are not easy to de-
fine in domains with blended tasks, described next.

3.3 Blended Tasks
Interleaved tasks are defined in terms of the structure of the state

space, which in turn depends on the transition function. However, it
is also desirable for states in the same task to share high-level prop-
erties linked to semantic predicates. Unfortunately, it is sometimes
hard to partition the state space of a domain with respect to such
properties. In fact, sets of states in which different semantic prop-
erties hold may not be disjoint. The region where such properties
overlap blends the properties of different tasks.

Assume thatm distinct semantic predicatesψ1, . . . , ψm are iden-
tified in some domain, but that

∃i, j ∈ {1, . . . ,m}(i 6= j ∧ Φ(ψi) ∩ Φ(ψj) 6= ∅). (8)

That is, the set of m predicates does not satisfy properties 5 and 6
because the resulting tasks are not disjoint. It is possible to choose
new predicates specifically designed to address the overlap, by re-
placing every two predicates ψx, ψy whose tasks overlap with three
new predicates φx, φy, φxy:

φx(s) = ψx(s) ∧ ¬ψy(s), (9)

φy(s) = ψy(s) ∧ ¬ψx(s), (10)

φxy(s) = ψx(s) ∧ ψy(s). (11)

These new predicates split up states into those that only satisfy ψx,
those that only satisfy ψy , and those that satisfy both.

If every state satisfies at least one of the initial m predicates, it-
erating this process creates a set of predicates that generate disjoint
tasks. If the thrashing rate between the resulting tasks is sufficiently
low, then they are interleaved.

However, such a proliferation of predicates ignores the fact that
some states have properties from multiple tasks. An alternative is to
treat regions of intersection as blended regions between tasks. This
view allows a learning agent to focus on major distinctions between
tasks rather than micromanage different behaviors for many small
but similar tasks. At least two semantic predicates ψp, ψq that sat-
isfy the following properties are required:

∃s ∈ S(ψp(s) ∧ ¬ψq(s)), (12)

∃s ∈ S(ψq(s) ∧ ¬ψp(s)), (13)

∃s ∈ S(ψq(s) ∧ ψp(s)). (14)

In other words, the tasks defined by ψp and ψq are not disjoint,
but neither is a subset of the other. As a result, the states not in
the intersection correspond to specific tasks, and the states in the
intersection are in the blended region between those two tasks.

In domains with blended tasks, it becomes important for an agent
to decide what role to take on at any given time. There may be clear
goals in regions of a specific task, but in the blended region there
are often multiple competing goals. If an agent can discover its own
task division, it can more easily learn which goals to pursue in such
regions. However, learning methods that easily allow for different
modes of behavior in different tasks are needed in both blended and
interleaved domains. Such methods are described next.

4. LEARNING METHODS
Evolutionary multiobjective optimization is used to evolve con-

trollers for MDPs with multiple tasks. The evolved individuals are
neural networks, and modular architectures are used to encourage
multimodal behavior.

4.1 Evolutionary Multiobjective Optimization
Because different tasks can have different goals, domains requir-

ing multimodal behavior may have multiple objectives. Therefore,
a principled way of dealing with multiple objectives is needed.
Such a framework is provided by the concepts of Pareto dominance
and optimality:
Pareto Dominance: Vector ~v = (v1, . . . , vN) dominates
~u = (u1, . . . , uN) iff

∀i ∈ {1, . . . , N}(vi ≥ ui) and (15)

∃i ∈ {1, . . . , N}(vi > ui). (16)

Pareto Optimality: A set of points A ⊆ F is Pareto optimal iff
it contains all points such that ∀~x ∈ A¬∃~y ∈ F such that ~y dom-
inates ~x. The points in A are non-dominated, and make up the
non-dominated Pareto front of F .

These definitions indicate that one solution dominates another if
it is strictly better in at least one objective and no worse in the oth-
ers. The best solutions are not dominated by any other solutions,
and make up the Pareto front of the search space. The next best
individuals are those that would be in a recalculated Pareto front if
the actual Pareto front were removed first. Layers of Pareto fronts
can be defined by successively removing the front and recalculating

it for the remaining individuals. Solving a multiobjective optimiza-
tion problem involves approximating the first Pareto front as best as
possible. This paper accomplishes this goal using Non-dominated
Sorting Genetic Algorithm II (NSGA-II [9]).

NSGA-II uses (µ + λ) elitist selection favoring individuals in
higher Pareto fronts of the current population over those in lower
fronts. Within a given front, individuals that are more distant from
others in objective space are favored by selection so that the algo-
rithm explores diverse trade-offs.

Applying NSGA-II to a problem produces a population contain-
ing an approximation to the Pareto front. This approximation set
potentially contains multiple solutions. Usually, this set must be
analyzed to determine which solutions fulfill the needs of the user,
but for the domains in this paper (whose objectives are described
in Section 5.2), a specific objective weighting (based on Ms. Pac-
Man game score) is available which reduces two objectives to a
single score. Evolution on this single objective could also be used,
but optimizing with multiple objectives instead of one is appealing
because it can improve search by helping avoid local optima [14].

NSGA-II is indifferent as to how solutions are represented. This
paper uses NSGA-II to evolve artificial neural networks.

4.2 Neuroevolution
Neuroevolution is the simulated evolution of artificial neural net-

works. All behavior in this paper is learned via a version of NEAT
(Neuro-Evolution of Augmenting Topologies [26]), a constructive
neuroevolution method that has been successful in many RL do-
mains [15, 25].

NEAT networks start with no hidden neurons, and are modified
by three mutation operators during evolution. Weight mutation per-
turbs the weights of existing network connections, link mutation
adds new connections between existing nodes, and node mutation
splices new nodes along existing connections. NEAT also features
an efficient method of topological crossover between networks.

The variant of NEAT used in this paper is Modular Multiob-
jective NEAT1 (MM-NEAT [24]), which distinguishes itself from
NEAT by incorporating NSGA-II, and providing several methods
for creating networks with multiple output modules, described next.

4.3 Modular Networks
MM-NEAT networks allow for multiple output modules. Each

such module defines a different control policy. A new feature of
MM-NEAT in this paper is the ability to arbitrate between modules
based on a human-specified division, i.e. via Multitask networks.
As in previous research, arbitration can also be based on preference
neurons. In preference neuron networks, evolution must discover
how to use the modules. Using Module Mutation, evolution must
also settle on an appropriate number of modules. Each of these
approaches is evaluated in this paper.

Multitask networks were first proposed by Caruana [7] for su-
pervised learning using neural networks and backpropagation. One
network has multiple modules, and each module corresponds to a
different task (Fig. 1b). Each module is trained on data for its cor-
responding task, but because hidden-layer neurons are shared by all
outputs, knowledge common to all tasks can be stored in the hid-
den layer. This approach speeds up supervised learning of multiple
tasks because knowledge shared across tasks is only learned once,
rather than learned independently multiple times.

Multitask Learning is a powerful technique, but the individual
tasks need to be identified a priori (the specific divisions used in
Ms. Pac-Man are discussed in Section 5.2). Appropriate task divi-
1Download at http://nn.cs.utexas.edu/?mm-neat. Download in-
cludes source code for all experiments presented in this paper.

sions are not always obvious, and obvious divisions may actually
hurt learning. Therefore, Multitask Learning will only be useful if
its task division is appropriate. When tasks are blended, it is hard to
provide an appropriate division. To discover better task divisions,
a means of learning how to arbitrate between tasks is needed.

Preference neurons make module arbitration without a human-
specified task division possible. Each module has policy neurons
for defining behavior and a preference neuron that outputs the net-
work’s preference for using that module’s policy neurons (Fig. 1c).
Whenever inputs are presented to the network, the module whose
preference neuron output is highest specifies the network’s output.

Preference neurons partition the state space into one set per out-
put module, though there is no requirement that these sets are inter-
leaved tasks in terms of the thrashing rate τ̄ between them. How-
ever, preference neuron networks have the capacity to evolve such
a task division if it is useful.

This architecture assumes that a designer specifies the number of
modules. However, evolution can also discover how many modules
are needed by adding modules gradually, using Module Mutation.

Module Mutation is any structural mutation operator that adds a
new output module to a neural network. An indefinite number of
modules may be added in this way. Such networks depend on pref-
erence neurons for module arbitration. New populations start with a
single module and a preference neuron that only becomes relevant
after more modules are added (Fig. 1d). Each Module Mutation
adds a new set of policy neurons and a new preference neuron.

Different versions of Module Mutation exist [23, 24]. This paper
uses MM(D), for duplicate, because each new module duplicates
the behavior of an existing module. For every link into a policy
neuron in the original module, a duplicate link into the correspond-
ing policy neuron of the new module is created, and it has the same
source neuron and link weight as the link being copied (Fig. 1e).
After MM(D), a network will behave the same as before, but evo-
lution can then modify the new structure, so that module behavior
diverges. However, links to the new module’s preference neuron
are not copied from the parent module. Rather, the new preference
neuron has a single link with a random source and weight, to en-
courage the module to be used in different circumstances.

MM(D) and the other modular approaches described so far are
evaluated in domains with interleaved tasks and blended tasks, as
described next.

5. EXPERIMENTS
The domains used for evaluation are two variants of the classic

video game Ms. Pac-Man. This game requires multimodal behav-
ior because enemy agents are sometimes threats, and sometimes
sources of points. Most of the modular architectures described
above were applied to the original, blended version of Ms. Pac-
Man [24], in which a mixture of edible and threat ghosts can be
present at the same time. However, the interleaved version of the
domain, in which such mixtures never occur, is new, and seeing
these results side-by-side gives new insight into when and why cer-
tain types of modular networks are successful. This section de-
scribes both blended and interleaved variants of Ms. Pac-Man, then
describes experiments in both domains.

5.1 Ms. Pac-Man
Ms. Pac-Man (1981) is among the most popular video games

of all time. Its gameplay is simple, yet requires complex strate-
gies for success. A popular platform for Ms. Pac-Man research is
the simulator for the Ms. Pac-Man vs. Ghosts competitions2 [21],

2http://www.pacman-vs-ghosts.net/

(a) Single-module Network

2 21 1

(b) Multitask Network (c) Preference Neuron Network

(d) Before Module Mutation (e) Module Mutation Duplicate

Figure 1: Modular Networks: These example networks are designed for a domain where two policy neurons define the behavior of an agent. Inputs
are at the bottom, and each output module is contained in its own red box. (a) Standard neural network with just one module. (b) Multitask network
with two modules, each consisting of two policy neurons. A human-specified task division indicates when to use Policy 1 vs. Policy 2. (c) A fixed
network with two modules that uses preference neurons (colored gray) to determine which module to use. (d) A starting network in a population
where Module Mutation is enabled. It has one module, and an irrelevant preference neuron. (e) After MM(D), the network gains a new module with
policy neurons linked to the same neuron sources with the same link weights as policy neurons in the module that was duplicated. However, the new
preference neuron is linked to a random source with a random weight so that the new module is used in different situations. After MM(D), both the
pre-existing and newly added preference neurons become relevant. Extra modules allow these networks to learn multimodal behavior more easily by
associating a different module with each behavioral mode.
which includes a standard Legacy ghost team that approximates
the original ghosts.

In Ms. Pac-Man, each of four mazes contains several pills and
four power pills. Ms. Pac-Man moves around, eating pills she
comes in contact with, all of which must be eaten to clear a level.
Each pill earns 10 points, and each power pill 50 points.

Each maze starts with four hostile ghosts in a lair near the center
of the maze. They come out one by one and pursue Ms. Pac-Man
according to different algorithms. If a ghost touches Ms. Pac-Man,
she dies and the episode ends. However, if Ms. Pac-Man eats a
power pill, then for a limited time she can eat the ghosts. The 1st,
2nd, 3rd, and 4th ghosts eaten in sequence are worth 200, 400, 800,
and 1600 points, respectively. The maximum score is achieved by
eating all four ghosts after each power pill. This goal becomes more
challenging in each subsequent level, because edible time decreases
as the level increases, but it is still achievable because edible ghosts
move at half speed.

If ghosts were always all edible or all threatening, this domain
would provide a clear example of interleaved tasks: one task pred-
icate satisfied when any ghost was edible, and the other when any
ghost was a threat. An upper bound on τ̄ for this interleaved do-
main can be calculated by realizing that each power pill can cause
two task transitions: ghosts become edible, then go back to be-
ing threats. Some amount of time has to pass before Ms. Pac-Man
can reach a power pill, and once she eats one she is guaranteed to
survive for the entire edible time, which is 200 in the first maze.
Therefore, for every two task transitions, over 200 time steps must
pass. Thus, an upper bound for the thrashing rate is 2/200 = 0.01.
This bound will hold despite the fact that the edible time decreases
to 145 by the fourth level. It takes over 1,000 time steps simply to
eat all pills in one of the mazes, and dodging ghosts causes further
delays. Therefore, the extra time steps required to beat preceding
levels more than cancels out the decrease in edible time.

However, sometimes ghosts of both types are in the maze at the
same time. After a ghost is eaten it returns to the lair for a short
time before reemerging as a threat, which can happen before the
edible time has expired for the other ghosts. Therefore, there are
situations with both threat and edible ghosts, each at different po-
sitions relative to Ms. Pac-Man, which put the competing goals of
survival and ghost eating at odds with each other. This set of states
represents the blended region between the threat and edible tasks.
Thus, Ms. Pac-Man is a game with blended tasks.

However, the game can be modified to have strictly interleaved
tasks by confining eaten ghosts to the lair until either all ghosts
have been eaten, or the edible time has expired. This change cre-
ates a new domain that shows the relative benefits of different types
of modular policies in domains with interleaved vs. blended tasks.
Although the two domains are slightly different, each requires mul-
timodal behavior to succeed. The next section explains how exper-
iments in these domains are conducted.

5.2 Experimental Setup
Neural networks are evolved in the manner described by Schrum

and Miikkulainen [24], details of which are provided below. Net-
works are evaluated with sensor information corresponding to each
available movement direction on each time step in order to produce
a single output value for each direction. Ms. Pac-Man moves in the
direction with the highest network output.

There are both direction-oriented sensors and sensors that are not
direction-oriented, i.e. ones providing the same reading for each di-
rection. Direction-oriented distances measure the shortest path to
objects of interest starting in a particular direction and continuing
without reversing. Distances have a maximum of 200, and all sen-
sors are scaled to [0, 1].

The direction-oriented sensors are: distances to the nearest pill,
power pill, and junction, the maximum numbers of pills and junc-

tions within 30 steps, distances to the 1st, 2nd, 3rd, and 4th closest
ghosts, whether each ghost is approaching, whether a directional
path to each ghost contains junctions, and the Options From Next
Junction (OFNJ). OFNJ looks at the next junction in a given di-
rection, and counts the number of subsequent junctions that can be
safely reached from the first junction without reversing. The safety
of a route can be determined by taking all agent distances into ac-
count and conservatively assuming ghosts will follow the shortest
path to the target junction. Additionally, the blended game has a
sensor for whether each ghost is edible, which is not needed in the
interleaved version because a single sensor provides this informa-
tion about all ghosts.

The remaining sensors are not direction-oriented: a constant bias,
the proportions of remaining pills, power pills, edible ghosts, and
edible time, and Boolean sensors indicating whether any ghost is
edible, whether there are four threats outside the lair, and whether
Ms. Pac-Man is within 10 steps of a power pill.

These sensors are used to evolve Ms. Pac-Man controllers with
separate pill and ghost objectives. The pill score is the number of
pills eaten, including power pills. The ghost score gives points pro-
portional to the score that would be received for each ghost eaten:
the 1st, 2nd, 3rd, and 4th ghosts are worth 1, 2, 4, and 8 points, re-
spectively. Evaluation in Ms. Pac-Man is noisy because the ghost
movement is non-deterministic, so each neural network is evalu-
ated 10 times; fitness scores are the average scores across evalua-
tions. Although these objectives are used during evolution, the final
results are evaluated in terms of game score.

Because 10 episodes per network are costly, an episode will end
after the fourth maze is cleared, and an 8,000 time step per level
limit is imposed, after which point Ms. Pac-Man dies.

In both the interleaved and blended versions of the game, popu-
lations of networks with one module (1M), two modules (2M), and
three modules (3M) are evolved. Modular networks use preference
neurons to decide which module to use on each time step. Popula-
tions that start with one module, but can add more via MM(D), are
also evaluated. These approaches were previously evaluated in the
blended Ms. Pac-Man game, but not in the interleaved version.

Multitask networks require human-specified task divisions. In
the interleaved game, the Multitask (MT) approach has one module
each for the edible and threat tasks. In the blended game, two Mul-
titask approaches are used. The two module (MT2) approach uses
one module when any ghost is edible, and another module other-
wise, and the three module (MT3) approach uses separate modules
when all ghosts are either threats or edible, and the third module
when there is a mix of both types. MT3 treats the blended region
between tasks as its own task.

Populations of each type are evolved 30 times for 200 genera-
tions each, with a population size of 100. The mutation rates are:
5% chance of weight perturbation per link, 40% chance of a new
link, and 20% chance of a new node. In MM(D) runs, Module Mu-
tation is applied to 10% of offspring. The crossover rate is 50%.
These settings lead to the results described in the next section.

5.3 Results
In general, modular networks perform well in both the inter-

leaved and blended domains, while 1M performs the worst. Multi-
task approaches handle interleaved tasks well, but perform poorly
when tasks are blended.

Figure 2a shows how in the interleaved domain, 2M, 3M, MM(D)
and MT all quickly achieve higher scores than 1M. In the final gen-
eration, each of these modular approaches has much higher scores
than 1M. Figure 2b shows how in the blended domain, methods
using preference neurons (MM(D), 3M and especially 2M) reach

scores much higher than those achieved by the Multitask methods
(MT2 and MT3) and 1M. The modular approaches that use prefer-
ence neurons are all better than 1M and the Multitask approaches.
The high performance of preference neuron approaches is consis-
tent with previous work, but the poor performance of Multitask net-
works is an interesting new result.

These results indicate that while human-specified and machine-
learned task divisions can both handle interleaved tasks well, human-
specified task divisions have difficulty with blended tasks. This re-
sult holds when the blended region is treated as its own task, as
with MT3.

These results are statistically verified by post-learning evalua-
tions of the champions from each run. Each was evaluated 1,000
times in the game, and the resulting average scores were compared.
In each domain, Kruskal-Wallis tests verify that the learning al-
gorithms perform differently, and pairwise Mann-Whitney U post
tests with Bonferroni error correction identify significant differ-
ences between specific pairs. Specifically, there are differences
between methods in the interleaved domain (H = 37.02, df =
4, N = 30, p ≈ 1.8 × 10−7), and post tests reveal that all mod-
ular approaches are significantly better than 1M (p < 0.05), but
not different from each other. There were also significant differ-
ences between methods in the blended domain (H = 49.69, df =
5, N = 30, p ≈ 1.6×10−9), but these post tests indicate that while
2M, 3M, and MM(D) are significantly better than 1M and MT2, only
2M and 3M are significantly better than MT3 (p < 0.05).

These post-learning evaluations also reveal the types of task divi-
sions learned by each champion. Average scores are plotted against
the usage of the most used module in Figures 2c and 2d. Color-
coded movies3 of the module usage are observed to determine the
role of each module. Similar divisions emerge in both versions
of the game. However, certain divisions do not work as well in
blended tasks as they do in interleaved tasks.

A common strategy in both domains is to dedicate one module
to dealing with edible ghosts (roughly 20% of the time) and an-
other to threat ghosts (roughly 80%). This strategy is mandated by
MT in the interleaved domain, and approximated in different ways
by MT2 and MT3 in the blended domain (the 20% that MT3 ded-
icates to edible ghosts is split across two modules). The 2M, 3M,
and MM(D) networks also learn a pure threat/edible strategy in the
interleaved domain, and an approximation of it in the blended do-
main. In particular, preference neurons in the blended domain do
not switch modules as soon as ghost states change, but switch mod-
ules strategically based on the number and proximity of ghosts of
different types. Sometimes, these networks will even thrash back
and forth between modules as they dodge threat ghosts until they
find an opening to chase an edible ghost. Despite the thrashing,
these strategies are still a form of threat/edible strategy.

However, threat/edible strategies earn higher scores in the inter-
leaved domain than in the blended domain. More importantly, their
scores are noticeably higher than most 1M scores in the interleaved
domain, whereas threat/edible and 1M scores mostly overlap in the
blended domain.

There is another, surprising strategy that emerges in both do-
mains. Only networks using preference neurons can develop it,
because it involves a task division that is not obvious: Networks
use one module about 95% of the time to deal with threat and
edible ghosts, but the remaining 5% dictates what Ms. Pac-Man
does when surrounded by threat ghosts. Specifically, the most-used
module eats pills while threat ghosts chase her, but sometimes the
ghosts surround Ms. Pac-Man. At this point, the least-used module
3Available at http://nn.cs.utexas.edu/?interleaved-pm and
http://nn.cs.utexas.edu/?blended-pm

 0

 5000

 10000

 15000

 20000

 25000

 0 50 100 150 200

G
a

m
e

 S
c
o

re

Generation

2M
3M

MM(D)
MT
1M

(a) Interleaved Evolution Average Score Results

 0

 5000

 10000

 15000

 20000

 0 50 100 150 200

G
a

m
e

 S
c
o

re

Generation

2M
3M

MM(D)
MT3
MT2

1M

(b) Blended Evolution Average Score Results

 0

 20

 40

 60

 80

 100

 10000 15000 20000 25000

%
 U

s
a
g
e

Game Score

1M
2M

 3M
MM(D)

MT

(c) Interleaved Primary Module Usage Post Results

 0

 20

 40

 60

 80

 100

 8000 12000 16000 20000

%
 U

s
a
g
e

Game Score

1M
2M

 3M
MM(D)

MT2
MT3

(d) Blended Primary Module Usage Post Results

Figure 2: Results During Evolution and Post-Learning Evaluations For Both Interleaved and Blended Domains. Average champion scores across 30
runs of evolution are shown for (a) interleaved and (b) blended domains. Interleaved scores are generally higher because this version of the game
is easier. Most modular approaches perform well in both domains, but Multitask networks only perform well in the interleaved domain. Multitask
performance in the blended domain is close to that of 1M, which performs poorly in both domains. Post-learning evaluations in both the (c) inter-
leaved and (d) blended domains clarify the difference. Average scores of each champion across 1,000 evaluations are plotted on the x-axis, and the
percentage of time steps that each champion used its most-used module across all evaluations is plotted on the y-axis. The middle cluster in each figure
corresponds to champions using a threat/edible task division, while the cluster in the top-right of each figure corresponds to a luring strategy. The
gap between threat/edible and luring scores in the blended domain is larger than the corresponding gap in the interleaved domain, thus highlighting
the importance of being able to discover custom task divisions in a domain with blended tasks. Videos of each evolved behavior are available in the
interleaved (http://nn.cs.utexas.edu/?interleaved-pm) and blended (http://nn.cs.utexas.edu/?blended-pm) domains.
kicks in to help Ms. Pac-Man escape. Often this behavior happens
near a power pill, which then makes it easy for Ms. Pac-Man to first
eat the power pill, and then all ghosts. The overall behavior learned
is thus a luring behavior, and it greatly increases the ghost score.
Although champions in both domains evolve luring behavior, it is
more vital in the domain with blended tasks, where the score gap
between luring behavior and threat/edible behavior is larger.

A final curious result is that preference neuron networks rarely
make use of three or more modules. In particular, it is not clear why
3M or MM(D) networks do not develop a luring strategy with the
most-used module split up into one module for edible ghosts and
one for threat ghosts. The 3M networks evolve to ignore one mod-
ule, and MM(D) networks either stop adding modules beyond the
second, or mostly ignore their few additional modules. Of course,
even though a three-module division seems to make sense from
a human perspective, the successful two-module luring networks

show that it is not necessary. The luring networks with just two
modules are apparently easier for evolution to discover than net-
works that behave similarly, but have more modules, possibly be-
cause of the extra coordination effort required.

6. DISCUSSION
Similar behaviors were developed in the interleaved and blended

domains, but the resulting scores are different. A threat/edible divi-
sion makes sense in the interleaved domain, because the two tasks
are sharply divided. Luring behavior earns higher scores in this
domain, but the difference is small because a simple threat/edible
division already makes it easy to eat a lot of ghosts. Because all
ghosts are edible at the same time, advanced planning is not needed
to assure that ghosts are eaten before threats return, which would
disrupt the simple strategy of pursuing the edible ghosts wherever
they are.

In contrast, luring behavior is strongly needed in the blended
domain. In this domain, the threat/edible split is better than us-
ing a single module, but this strategy will often fail to eat many
ghosts because the return of threat ghosts disrupts it. Luring be-
havior allows ghosts to be quickly eaten once they become edible,
which means that a mix of threat and edible ghosts are encountered
less often; luring agents spend less time in the blended region be-
tween tasks. In other words, evolution discovered a task division
that makes the blended domain behave more like an interleaved do-
main, which makes Ms. Pac-Man more successful.

In the blended domain—the standard Ms. Pac-Man—the scores
achieved by the luring strategy are better than those achieved by
other techniques, such as Genetic Programming [1, 4], Monte-Carlo
Tree Search [2], and Ant Colony Optimization [20]; see Schrum
and Miikkulainen [24] for a detailed comparison.

The results in this paper show how the choice of a learning tech-
nique should fit the type of task division. Human-specified task di-
visions, such as those employed by Multitask networks, work fine
in an interleaved domain, but poorly in one with blended tasks. If
Multitask networks were explicitly programmed to dedicate a mod-
ule to luring, then they could perhaps achieve similar success. Note,
however, that this task division was not obvious a priori, nor is it
clear how to implement it a posteriori.

Though preference neuron networks automatically evolve good
task divisions, it could be useful in future work to incorporate the
formalism from Section 3 into MM-NEAT to discover appropriate
task divisions more quickly and/or reliably.

Regardless, this paper not only reaffirms that letting evolution
discover its own task divisions is a promising technique for do-
mains with multiple tasks, but also identifies properties of domains
that make different modular architectures more likely to succeed.

7. CONCLUSION
This paper demonstrates how behavior can be divided effectively

into separate tasks in sequential decision-making problems. Two
kinds of domains were identified—interleaved and blended—and
modular neuroevolution techniques were used to solve them. The
results in two variants of Ms. Pac-Man showed that while human-
specified task divisions work well in interleaved domains, they are
difficult to properly specify for blended domains. Machine discov-
ery of multimodal behavior is therefore a promising approach to
challenging sequential decision-making problems.

8. ACKNOWLEDGMENTS
This research was supported in part by NSF grants DBI-0939454,

IIS-0915038, and SBE-0914796, and by NIH grant R01-GM105042.

9. REFERENCES
[1] A. M. Alhejali and S. M. Lucas. Evolving Diverse Ms. Pac-Man

Playing Agents Using Genetic Programming. In UKCI, 2010.
[2] A. M. Alhejali and S. M. Lucas. Using Genetic Programming to

Evolve Heuristics for a Monte Carlo Tree Search Ms Pac-Man
Agent. In CIG, pages 65–72. IEEE, 2013.

[3] A. G. Barto and S. Mahadevan. Recent Advances in Hierarchical
Reinforcement Learning. Discrete Event Dynamic Systems, pages
41–77, 2003.

[4] M. F. Brandstetter and S. Ahmadi. Reactive Control of Ms. Pac Man
Using Information Retrieval Based on Genetic Programming. In
CIG, pages 250–256. IEEE, 2012.

[5] R. A. Brooks. A Robust Layered Control System for a Mobile Robot.
Robotics and Automation, 2(10), 1986.

[6] R. Calabretta, S. Nolfi, D. Parisi, and G. Wagner. Duplication of
Modules Facilitates the Evolution of Functional Specialization.
ALife, 6(1):69–84, 2000.

[7] R. A. Caruana. Multitask Learning: A Knowledge-based Source of
Inductive Bias. In ICML, pages 41–48, 1993.

[8] J. Clune, J.-B. Mouret, and H. Lipson. The Evolutionary Origins of
Modularity. Royal Society B, pages 20122863–20122863, 2013.

[9] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A Fast and Elitist
Multiobjective Genetic Algorithm: NSGA-II. Evolutionary
Computation, 6:182–197, 2002.

[10] T. G. Dietterich. The MAXQ Method for Hierarchical Reinforcement
Learning. In ICML, 1998.

[11] B. Hengst. Discovering Hierarchy in Reinforcement Learning with
HEXQ. In ICML, pages 243–250, 2002.

[12] J. Huizinga, J.-B. Mouret, and J. Clune. Evolving Neural Networks
That Are Both Modular and Regular: HyperNeat Plus the Connection
Cost Technique. In GECCO, pages 697–704. ACM, 2014.

[13] N. Kashtan and U. Alon. Spontaneous Evolution of Modularity and
Network Motifs. National Academy of Sciences,
102(39):13773–13778, 2005.

[14] J. D. Knowles, R. A. Watson, and D. Corne. Reducing Local Optima
in Single-Objective Problems by Multi-objectivization. In EMO,
pages 269–283. Springer, 2001.

[15] N. Kohl and R. Miikkulainen. Evolving Neural Networks for
Strategic Decision-Making Problems. Neural Networks, Special issue
on Goal-Directed Neural Systems, 2009.

[16] G. Konidaris and A. Barto. Skill Discovery in Continuous
Reinforcement Learning Domains using Skill Chaining. In NIPS,
pages 1015–1023, 2009.

[17] J. R. Koza. Genetic Programming II: Automatic Discovery of
Reusable Programs. MIT Press, 1994.

[18] D. Lessin, D. Fussell, and R. Miikkulainen. Open-Ended Behavioral
Complexity for Evolved Virtual Creatures. In GECCO, pages
335–342. ACM, 2013.

[19] J.-B. Mouret and S. Doncieux. MENNAG: A Modular, Regular and
Hierarchical Encoding for Neural-networks Based on Attribute
Grammars. Evolutionary Intelligence, 2008.

[20] G. Recio, E. Martín, C. Estébanez, and Y. Sáez. AntBot: Ant
Colonies for Video Games. TCIAIG, 4(4):295–308, 2012.

[21] P. Rohlfshagen and S. M. Lucas. Ms Pac-Man versus Ghost Team
CEC 2011 Competition. In CEC, pages 70–77. IEEE, 2011.

[22] J. P. Rosca. Generality Versus Size in Genetic Programming. In GP,
pages 381–387. MIT Press, 1996.

[23] J. Schrum and R. Miikkulainen. Evolving Multimodal Networks for
Multitask Games. TCIAIG, 4(2):94–111, 2012.

[24] J. Schrum and R. Miikkulainen. Evolving Multimodal Behavior With
Modular Neural Networks in Ms. Pac-Man. In GECCO, pages
325–332. ACM, 2014.

[25] K. O. Stanley, B. D. Bryant, I. Karpov, and R. Miikkulainen.
Real-Time Evolution of Neural Networks in the NERO Video Game.
In National Conference on Artificial Intelligence, 2006.

[26] K. O. Stanley and R. Miikkulainen. Evolving Neural Networks
Through Augmenting Topologies. Evolutionary Computation, pages
99–127, 2002.

[27] P. Stone and M. Veloso. Layered Learning. In ECML, pages
369–381. Springer Verlag, 2000.

[28] R. S. Sutton and A. G. Barto. Reinforcement Learning: An
Introduction. MIT Press, Cambridge, MA, 1998.

[29] R. S. Sutton, D. Precup, and S. P. Singh. Between MDPs and
Semi-MDPs: A Framework for Temporal Abstraction in
Reinforcement Learning. Artificial Intelligence, 112(1-2):181–211,
1999.

[30] T. Thompson, F. Milne, A. Andrew, and J. Levine. Improving
Control Through Subsumption in the EvoTanks Domain. In CIG,
pages 363–370. IEEE, 2009.

[31] J. Togelius. Evolution of a Subsumption Architecture
Neurocontroller. Intelligent and Fuzzy Systems, pages 15–20, 2004.

[32] N. van Hoorn, J. Togelius, and J. Schmidhuber. Hierarchical
Controller Learning in a First-Person Shooter. In CIG, pages
294–301. IEEE, 2009.

[33] P. Verbancsics and K. O. Stanley. Constraining Connectivity to
Encourage Modularity in HyperNEAT. In GECCO, pages
1483–1490. ACM, 2011.

