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ABSTRACT

Previous research using evolutionary computation in Multi-Agent
Systems indicates that assigning fitness based on team vs. individual
behavior has a strong impact on the ability of evolved teams of artifi-
cial agents to exhibit teamwork in challenging tasks. Such research
made use of single-objective evolution, but when multiobjective
evolution is used, populations can be subject to individual-level ob-
jectives, team-level objectives, or combinations of the two. This
paper explores the performance of cooperatively coevolved teams of
agents controlled by artificial neural networks subject to these types
of objectives. Because of the tension between individual and team
behaviors, multiple modes of behavior can be useful, so the effect of
modular neural networks is also explored. Results demonstrate that
fitness rewarding individual behavior is superior to fitness rewarding
team behavior, despite being applied to a cooperative task. However,
networks with multiple modules can discover intelligent behavior,
regardless of which type of objectives are used.
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1 INTRODUCTION

Past research has studied the effects of selection pressures [9], co-
evolution [2], modular neural networks [5], and multiple objectives
[4] in the evolution of complex agent behavior, but none of this
research studies all at once. This paper explores how these concepts
work in tandem. Combinations of different types of multiobjective
selection and numbers of network output modules show how these
components interact in the evolution of cooperative behavior.
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The concept of selection pressures stems from research on the
rewarding of individual vs. team behavior [9]; does one agent get
credit for good outcomes, or does the whole team? Rather than have
only one objective assigning credit in these ways, one can apply
Pareto-based multiobjective optimization [1]. Multiobjective opti-
mization is natural in domains that would otherwise use a single
complex objective consisting of several components. Multiple objec-
tives also make it easy to go beyond a simple either/or comparison,
and also study the combination of individual and team objectives.

Skilled cooperation depends on balancing selfish and cooperative
actions, both across different team members and by individuals.
Evolved neural networks control agents in this paper, and such
agents can more easily exhibit multimodal behavior using modular
network structures [6]. Past research has demonstrated the ability of
modular networks to succeed in domains with homogeneous teams
[5], but this paper utilizes cooperative coevolution with separate
and distinct sub-populations for each evolved team member. This
approach allows individuals to develop specialized behaviors.

2 PREDATOR/PREY EXPERIMENT

These issues are studied in a torus-shaped predator/prey grid world,
variants of which have been used by researchers in many ways [2, 8].
All experiments feature a team of three evolved predators trying to
catch two scripted prey agents that flee the nearest predator.

Predators must work together in order to herd and capture prey.
Selfishly chasing the prey generally leads to all agents going in
circles around the torus. The success of each individual at least
partially relies on the success of the team. Consequently, predators
develop specializations as valuable members of the team. Some
common roles that emerge in successful teams are blocker, herder,
and aggressor. The blockers do not move very much but align
themselves at a distance with the side to side movement of the more
aggressive predators so that they can force the prey to run toward the
blocker. The herders work to keep the prey in front of the aggressors
by running parallel to the prey’s direction of movement, so that it
does not slip by to one side. The job of the aggressor is to simply
close the gap on the prey as quickly as it can.

Predator agents were evolved using Modular Multiobjective Neuro-
Evolution of Augmenting Topologies (MM-NEAT [6]'), which com-
bines the multiobjective evolutionary algorithm Non-Dominated
Sorting Genetic Algorithm-1I (NSGA-II [1]) and standard NEAT [7].
MM-NEAT also allows for the evolution of networks with multiple
output modules. MM-NEAT has been extended in this paper to
support cooperative coevolution of separate sub-populations.

'Download at http://nn.cs.utexas.edu/?mm-neat
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Individual Selection || 1 2 0 0
Team Selection 0 0 1 2
Both Selection 1 2 1 2

Table 1: Objectives For Each Sub-population. Table shows the num-
ber of fitness functions for each sub-population in each experiment.
Numbers are the same whether networks have one or two modules. Ind
stands for Individual Selection, and Team stands for Team Selection.
Catch indicates the maximization of the number of prey caught. Dist
indicates the minimization of distances between predators and prey (dis-
tinct fitness functions measure distance to each prey agent).
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(a) One Module Network
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Figure 1: Starting Network Configurations. New populations start
with no hidden neurons, but each output is fully connected to all in-
puts. (a) Networks with one module have outputs for moving up, down,
left, and right, and staying still. Inputs are x/y offsets to each other
agent, followed by a constant bias of 1.0. The agent inputs are grouped
into predators and prey, and sorted according to proximity in terms of
Manhattan Distance. (b) Networks with two modules use the same in-
puts, but have two distinct output modules. Each module has all of the
outputs possessed by the one module network, as well as a preference
neuron. For each set of inputs, the two module network will pick the
action from the module whose preference neuron output is higher.

Full details of the experiments are discussed in an associated
technical report [3]. The main focus of the experiments is in study-
ing different combinations of fitness functions in conjunction with
different numbers of network output modules. The individual fitness
functions were combined in three ways, as summarized in Table 1.
The three specific groups of fitness functions used focus either en-
tirely on individual selection, entirely on team selection, or on both.
Evolved networks could consist of either one or two preference mod-
ules (Figure 1). The experimental runs have the labels Individual 1M,
Individual2M, Team1M, Team2M, Both1M, and Both2M.

3 RESULTS

The results show that two modules are better than one module and
that individual selection and combination setups are better than
pure team selection. Fitness plots of the average number of prey
caught by the champion team of each generation across 30 runs
for each method are shown in Figure 2. Statistical comparisons
indicate that Team1M is significantly inferior to other methods (p <
0.05). Further discussion of behaviors and results is available in the
technical report [3], and videos of representative behaviors can be
seen at southwestern.edu/~schrum2/SCOPE/predprey.html.
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Figure 2: Average Number of Prey Caught For Each Approach. Av-
erage prey caught by champion teams across 30 runs of each method
are plotted by generation with 95% confidence intervals shown. All 2M
variants are superior to their 1M counterparts. Among 1M configura-
tions, Both1M and IndividuallM are superior to Team1M.

4 CONCLUSION

The predator/prey task is an interesting domain requiring teamwork
and specialization. Results demonstrate that multimodal networks
are extremely helpful, and that individual selection can be superior
to team selection in a cooperative task when coevolution across
distinct sub-populations is used. The combination of both types of
selection pressures via multiobjective optimization was also effective.
Using multiobjective optimization with multimodal networks could
produce interesting cooperative behavior in more complex domains
as well.
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