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Abstract

We investigate the existence of fixed point families for the eccentric digraph
(ED) operator, which was introduced in [1]. In [2], the notion of the period
ρ(G) of a digraph G (under the ED operator) was defined, and it was
observed, but not proved, that for any odd positive integer m, Cm × Cm

is periodic, and that ρ(ED(Cm × Cm)) = 2ρ(ED(Cm)). Also in [2], the
following question was posed: which digraphs are fixed points under the
digraph operator? We provide a proof for the observations about Cm×Cm,
and in the process show that these products comprise a family of fixed
points under ED . We then provide a number of other interesting examples
of fixed point families.

1 Introduction

In [1], the idea of the eccentric digraph (ED) operator was introduced, and in [2], a number
of conjectures were posed about iterating this operator. The eccentricity e(u) of a vertex u
in a digraph G is defined to be the maximum distance of any vertex from u. This maximum
may be infinity, if some vertex is unreachable from u. The eccentric digraph ED(G) of a
digraph G has the same vertex set as G, and has a directed edge from u to v if and only if
the distance from u to v in G is e(u). In [2], the notion of the period ρ(G) of a digraph G
(under the ED operator) was defined, as follows: ρ(G) is the smallest positive integer p such
that EDp+t(G) = ED t(G) for some nonnegative integer t. A digraph is said to be periodic if
t(G) = 0. It was noted in [2] that Cm×Cm is periodic and ρ(ED(Cm×Cm)) = 2ρ(ED(Cm),
where m is an odd positive integer, but the authors stated that they did not have a proof
of this fact. Also in [2], the following question was posed: which digraphs are fixed points
under the ED operator? That is, for which digraphs G do we have ED(G) ∼= G, where ∼=
represents digraph isomorphism. Note that this question is posed in terms of isomorphism,
rather than equality, because the only digraphs G for which ED(G) = G are the complete
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graphs Kn. In this paper, we provide a proof that, for any odd positive integer m, Cm ×Cm

is periodic, and we prove the noted equality ρ(ED(Cm×Cm)) = 2ρ(ED(Cm)). In the process
we will show that these products comprise a family of fixed points under ED , for odd m. We
then provide a number of other interesting examples of fixed point families.

2 Cycle Products

Theorem 2.1 Let k ≥ 0, and let a0, a1, ..., a2k and b0, b1, ..., b2k be the vertices of two copies
of C2k+1. Then ED(C2k+1 × C2k+1) also has the structure of C2k+1 × C2k+1 and there is a
graph isomorphism ϕ : V (C2k+1 × C2k+1) → V (ED(C2k+1 × C2k+1)) defined by ϕ((ai, bj)) =
(aki⊕kj, b(k+1)i⊕kj), where ⊕ denotes addition mod 2k + 1.

Proof. We will analyze the adjacencies of vertex (a0, b0) in ED(C2k+1 × C2k+1), and extend
this analysis to all other vertices by symmetry. A breadth-first traversal in C2k+1 × C2k+1

easily reveals that the furthest vertices from (a0, b0) are the four unique vertices that have a
shortest distance of 2k steps (by different paths) away from (a0, b0), namely the set

{(ak, bk), (ak+1, bk), (ak, bk+1), (ak+1, bk+1)}.

So in ED(C2k+1×C2k+1), these four vertices (see Figure 1) will be the only ones adjacent to
(a0, b0). Furthermore, by symmetry, in ED(C2k+1×C2k+1), each vertex (ai, bj) is adjacent to
the four vertices{

(ai⊕k, bj⊕k), (ai⊕(k+1), bj⊕k), (ai⊕k, bj⊕(k+1)), (ai⊕(k+1), bj⊕(k+1))
}

.

Thus, every vertex has degree four, just as in the original product, and therefore it will suffice
to show that the function ϕ is edge-preserving, and is a bijection.

To show that ϕ is edge-preserving, since every vertex in each graph has degree four, it will
suffice to show that every horizontal edge is preserved under ϕ, as is every vertical edge.
Given an arbitrary horizontal edge {(ai, bj), (ai, bj⊕1)} in the edge set of C2k+1 × C2k+1, ϕ
maps the endpoints to (aki⊕kj, b(k+1)i⊕kj) and (aki⊕k(j⊕1), b(k+1)i⊕k(j⊕1)) respectively. These
two vertices are k steps apart in C2k+1 × C2k+1, since k(j ⊕ 1) ≡ kj ⊕ k (mod 2k + 1), and
hence are adjacent in ED(C2k+1 ×C2k+1). A similar straightforward calculation verifies that
every vertical edge is preserved under ϕ.

To show that ϕ is bijective, it will suffice to show that ϕ2 is bijective, and for this it will
suffice to show that ϕ2 is injective, since ϕ2 is a function from a finite set to itself. To this end
we make the following calculation of ϕ2, where all operations on indices are reduced modulo
2k + 1.
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ϕ2((ai, bj))
= {definition of ϕ}
ϕ((aki⊕kj, b(k+1)i⊕kj))

= {definition of ϕ}
(ak(ki⊕kj)⊕k((k+1)i⊕kj), b(k+1)(ki⊕kj)⊕k((k+1)i⊕kj))

= {reduction modulo 2k + 1}
(a(k+1)j, bki)

The proof that ϕ2 is injective follows:

ϕ2((ai, bj)) = ϕ2((ai′ , bj′))
⇐⇒ {by the above calculation}

(a(k+1)j, bki) = (a(k+1)j′ , bki′)
⇐⇒

(k + 1)j = (k + 1)j′ ∧ ki = ki′

=⇒ {multiplication by 2 and 4k, respectively }
2(k + 1)j = 2(k + 1)j′ ∧ 4k2i = 4k2i′

=⇒ {since 2(k + 1) ≡ 4k ≡ 1 (mod (2k + 1))}
j = j′ ∧ i = i′

⇐⇒
(ai, bj) = (ai′ , bj′)

(a0, b0)

Figure 1: An illustration of Theorem 2.1 with k = 4, showing the vertices of
C9×C9 in a grid structure. Each vertex is connected by four undirected edges
(shown only for (a0, b0)) to its two horizontal neighbors and its two vertical
neighbors, with wraparound from right to left and bottom to top, giving the
grid a toroidal topology. The four filled vertices are those as far as possible
(eight steps) from (a0, b0), and so are adjacent to (a0, b0) in ED(C9 × C9).
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The following lemma is implicit in the proof of a claim in Example 3.4 of [2]. It is stated and
proved explicitly here for the convenience of the reader and for use in later theorems.

Lemma 2.2 For all k ≥ 0, ED(C2k+1) ∼= C2k+1.

Proof. This follows since two vertices in ED(C2k+1) are adjacent in ED(C2k+1) if and only
if those vertices are exactly k steps apart in the cycle C2k+1. The function ϕ : V (C2k+1) →
V (ED(C2k+1)), defined by ϕ(vi) = vi⊗k, where ⊗ denotes multiplication modulo 2k + 1, is
a graph isomorphism. It is easy to see that ϕ is a bijection, with ϕ−1(vi) = vi⊗4k, since
4k ⊗ k = 1. Using modular arithmetic, it is straightforward to show that ϕ and ϕ−1 are
edge-preserving.

Theorem 2.3 For all k ≥ 0, ED2(C2k+1 × C2k+1) = ED(C2k+1)× ED(C2k+1).

Proof. First recall that two vertices in ED(C2k+1) are adjacent in ED(C2k+1) if those vertices
are exactly k (or equivalently k+1) steps apart in the cycle C2k+1. In the proof of Theorem 2.1
above, it was shown that ϕ2((ai, bj)) = (a(k+1)j, bki). This can be written as ϕ2 = θ ◦ τ ,
where θ((ai, bj)) = (a(k+1)i, bkj) and τ((ai, bj)) = (aj, bi). Now observe that, in C2k+1 ×
C2k+1, every vertical edge {(ai, bj), (ai⊕1, bj)} is mapped by θ to the vertices of a vertical
edge

{
(a(k+1)i, bkj), (a(k+1)(i⊕1), bkj)

}
of ED(C2k+1) × ED(C2k+1), since a(k+1)i is k + 1 steps

away from a(k+1)i⊕(k+1) in ED(C2k+1). It is similarly straightforward to verify that every
horizontal edge of C2k+1×C2k+1 is mapped by θ to a horizonal edge of ED(C2k+1)×ED(C2k+1).
Therefore, θ is an isomorphism between C2k+1×C2k+1 and ED(C2k+1)×ED(C2k+1), and since
τ is an automorphism of C2k+1×C2k+1, the function ϕ2 is also an isomorphism between C2k+1×
C2k+1 and ED(C2k+1) × ED(C2k+1). Furthermore, by Theorem 2.1, ϕ2 is an isomorphism
between C2k+1×C2k+1 and ED2(C2k+1×C2k+1). The proof can now be completed by observing
that ED2(C2k+1 × C2k+1) = ϕ2(C2k+1 × C2k+1) = ED(C2k+1)× ED(C2k+1).

Note that in the proof since τ is an automorphism of C2k+1 × C2k+1 that simply transposes
the product structure, every horizontal edge of C2k+1×C2k+1 is mapped under τ to a vertical
edge of ED(C2k+1) × ED(C2k+1) and every vertical edge is mapped to a horizontal edge.
Furthermore, as noted in the proof, θ carries every vertical edge to another vertical edge,
and every horizontal edge to another horizontal edge. Thus, overall ϕ2 = θ ◦ τ carries every
vertical edge to a horizontal edge, and every horizontal edge to a vertical edge (see Figure 2).

Theorem 2.4 For all k ≥ 0, and for all t ≥ 0, ED2t(C2k+1 × C2k+1) = ED t(C2k+1) ×
ED t(C2k+1).

Proof. The proof will by induction on t, with the base case t = 1 provided by Theorem 2.3.
In the calculation below of the inductive step, we replace the cycle C2k+1 by C to streamline
the notation.
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ED2t+2(C × C)
=

ED2t(ED2(C × C))
= { base case: Theorem 2.3 }

ED2t(ED(C)× ED(C))
= { let C ′ = ED(C) by Lemma 2.2 }

ED2t(C ′ × C ′)
= { inductive assumption }

ED t(C ′)× ED t(C ′)
=

ED t(ED(C))× ED t(ED(C))
=

ED t+1(C)× ED t+1(C)

Theorem 2.5 For all k ≥ 0, ρ(C2k+1 × C2k+1) = 2ρ(C2k+1).

Proof. By Theorem 2.4, and the definition of ρ, ρ(C2k+1 × C2k+1) ≤ 2ρ(C2k+1). In order to
prove the reverse inequality, let s be an integer with 0 < s < 2ρ(C2k+1), and consider two
cases. First, if s is even, then let q = s

2
. In this case,

EDs(C2k+1 × C2k+1)
= {by Theorem 2.1}
ϕs(C2k+1 × C2k+1)
= {s = 2q}
ϕ2q(C2k+1 × C2k+1)
= {by Theorem 2.4}
EDq(C2k+1)× EDq(C2k+1)

and since q < ρ(C2k+1), EDq(C2k+1) 6= ED(C2k+1). Therefore, s 6= ρ(C2k+1 × C2k+1). In the
other case, if s is odd, then let s = 2q+ 1, which gives EDs(C2k+1×C2k+1) = ϕ(ϕ2q(C2k+1×
C2k+1)). After the proof of Theorem 2.3, it was noted that ϕ2 carries every vertical edge to
a horizontal edge, and by symmetry that ϕ2 carries every horizontal edge to a vertical edge.
Therefore for every q, ϕ2q carries every horizontal edge to either a horizontal or a vertical
edge, depending on the parity of q. Also note that ϕ carries each horizontal edge, and each
vertical edge, to an edge joining two vertices that are in different factors of the domain product
structure. Therefore ϕs = ϕ(ϕ2q) cannot carry any horizontal (or by symmetry vertical) edge
to itself, and therefore ϕs cannot be the identity map. Hence s 6= ρ(C2k+1 × C2k+1).
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Figure 2: An illustration of Theorem 2.3 with k = 4. The first diagram
shows the vertices that are one and two steps away from (a0, b0) in ED(C9×
C9) by annotating those vertices with a 1 and 2, respectively. The next
diagram adds those that are 3 and 4 steps away, and the next adds those
that are 5 and 6 steps away. The last diagram labels those that are 7 and 8
steps away, and those marked by an 8 are adjacent to (a0, b0) in ED2(C9×C9).

3 Conjunctions of cycles

Another way to combine two graphs G and H is by the conjunction, or tensor product, G∧H,
as defined in [2]. InG∧H, the vertex set is the same as in the Cartesian productG×H, namely
it is the Cartesian product of the vertices of G and H. That is, V (G ∧H) = V (G)× V (H).
However, the edges are defined differently; there is an edge (in G ∧H) between (a1, b1) and
(a2, b2) if and only if there is an edge in G from a1 to a2, and also an edge in H from b1 to
b2. The following theorem is straightforward, but we include a proof for the convenience of
the reader.

Theorem 3.1 For all k ≥ 0, C2k+1 ∧ C2k+1
∼= C2k+1 × C2k+1.

Proof. Define ϕ : V (C2k+1 ×C2k+1)→ V (C2k+1 ∧C2k+1) by ϕ(ai, aj) = (ai⊕j, ai	j) where ⊕
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and 	 are addition modulo 2k+ 1 and subtraction modulo 2k+ 1, respectively. Since 2 has a
multiplicative inverse (namely, k+1) modulo 2k+1, it is easy to show by modular arithmetic
that this function is an injection, and therefore is also a bijection. An explicit formula for
ϕ−1 is given by ϕ−1(ai, aj) = (a(k+1)⊗(i⊕j), a(k+1)⊗(i	j)), where ⊗ represents multiplication
modulo 2k+ 1. It remains, then, to show that both ϕ and are ϕ−1 edge-preserving. Consider
an edge (ai, aj), (ai, aj⊕1) in C2k+1 × C2k+1. The image under ϕ of these two vertices is the
pair ((ai⊕j, ai	j), (ai⊕j⊕1, ai	(j⊕1))). It is easy to see that these two vertices are adjacent in
C2k+1 ∧C2k+1, and the other three cases are similarly straightforward calculations. It is also
easy to check with similar calculations that ϕ−1 is edge-preserving.

4 Fixed points

The following theorems address Question 3.3 in [2]. That is, which unlabeled graphs are fixed
points under the ED operator? Here we consider unlabeled graphs since the only graphs that
are fixed points as labeled graphs are the complete graphs. In the theorems and definitions
below, any labeling of the vertices is described as an aid to exposition; these vertex labelings
are not preserved in the isomorphisms used to exhibit the fixed point property.

Theorem 4.1 For all k ≥ 0, C2k+1 is a fixed point under the ED operator.

Proof. This isomorphism is proved in Lemma 2.2.

Theorem 4.2 For all k ≥ 0, C2k+1 × C2k+1 is a fixed point under the ED operator.

Proof. This isomorphism is proved in Theorem 2.1 above.

Theorem 4.3 For all k ≥ 0, C2k+1 ∧ C2k+1 is a fixed point under the ED operator.

Proof. This isomorphism follows from Theorem 3.1 and Theorem 4.2.

Theorem 4.4 Let n be an odd positive integer, and let k be a positive integer such that k
divides n−1, and define Bn,k to be the directed graph on vertices {v0, v1, ..., vn−1}, where each
vi has a directed edge to the “next-k” vertices. That is, for each vertex vi, there is a directed
edge (vi, vj) for each j = i⊕ 1, i⊕ 2, ...i⊕ k, where ⊕ denotes addition modulo n. Then Bn,k

is a fixed point under the ED operator.

Proof. Starting at any vertex vi, a breadth first search reveals that the vertices farthest
away are the “previous-k” vertices {vi	1, vi	2, ..., vi	k} (	 denotes subtraction modulo n),
since k divides n − 1. So, in ED (Bn,k), there is a directed edge from vi to each of these.
We will show that the function ϕ : V (Bn,k)→ V (ED(Bn,k)) defined by ϕ (vi) = vn	i where
	 represents subtraction modulo n, is a graph isomorphism. The function ϕ is clearly a
bijection, with ϕ = ϕ−1, so it will suffice to show that ϕ and ϕ−1 are edge-preserving. Let
(vi, vj) be a directed edge of Bn,k, then j = i⊕m for some m ∈ {1, 2, ..., k}. Therefore,
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[n	 j = n	 (i⊕m)]⇐⇒ [n	 j = (n	 i)	m]

and so, in ED (Bn,k), there is a directed edge from ϕ (vi) to ϕ (vj), as required. A similar
calculation (but starting with an edge in ED(Bn,k)) verifies that ϕ−1 is edge-preserving.

v0

Figure 3: An illustration of Theorem 4.4 with n = 17 and k = 4.
Each of the other vertices has the same pattern of adjacencies as v0,
but these edges are not shown in the figure. The vertices adjacent
from v0 in ED(B17,4) are marked with solid squares.

Theorem 4.5 Let n, k, and s be positive integers, such that k divides n−1 and s is relatively
prime to n. Define Bn,k,s to be the digraph on vertices {v0, v1, ..., vn−1}, where each vi has a
directed edge to the “next-k with step size s” vertices. That is, for each vertex vi, there is a
directed edge (vi, vj) for each j = i⊕ s, i⊕ 2s, ...i⊕ ks, where ⊕ denotes addition modulo n.
Then Bn,k,s is a fixed point under the ED operator.

Proof. The function vi 7→ vsi is a digraph isomorphism between Bn,k and Bn,k,s since s and
n are relatively prime. So by Theorem 4.4, Bn,k,s is a fixed point under the ED operator.

v0

Figure 4: An illustration of Theorem 4.5 with n = 17 and k = 4,
and s = 5. Note that the first three steps give v5, v10, and v15, while
the fourth step wraps around to v3. Each of the other vertices has
the same pattern of adjacencies as v0, but these edges are not shown
in the figure.

The next theorem refers to the double complete digraph (DK n), the digraph on n vertices, in
which there is a directed edge from every vertex to each of the others.
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Theorem 4.6 Let G be the digraph with 2n vertices formed by taking DKn and adding n
vertices each having a directed edge into every vertex of DKn. Then G is a fixed point.

Proof. Let v1, . . . , vn be the vertices of DK n and u1, . . . , un be the remaining vertices. Then,
we will show there is a graph isomorphism ϕ : V (G) → V (ED(G)) given by ϕ(vi) = ui and
ϕ(ui) = vi. The function is clearly a bijection on the vertices, so it will suffice to show that
ϕ preserves the edge structure. Let (vi, vj) be one of the directed edges of G. Then, ϕ takes
this edge to (ui, uj) which will certainly be in ED(G) as there is no path from ui to uj in
G. Similarly, the edges (ui, vj) in G will be sent to (vi, uj) by ϕ and again these edges are
in ED(G) as there is no path from vj to ui in G. Since all of the edges of G are of the form
(vi, vj) or (ui, vj) and the edges of ED(G) are only of the form (ui, uj) or (vi, uj), we know ϕ
is an isomorphism. Thus, G is a fixed point.

Figure 5: An illustration of Theorem 4.6 with n = 4. The upper
four vertices comprise a complete graph, where each undirected edge
denotes two edges, one in each direction. The lower four vertices
each have four directed edges, one to each of the upper four vertices.

Another way to show that the digraphs of the family defined in Theorem 4.6 are all fixed
points is to utilize Proposition 2.1 in [3], which is restated below as Proposition 4.7, for
the convenience of the reader. This lemma relies on a construction G−, the reduction of G,
which is defined to be digraph G with all outgoing edges removed from any vertex v that
is adjacent to all the other vertices. A digraph with no such vertices is said to be reduced,
and the reduced complement, denoted G−, is defined to the usual digraph complement of the
reduction of G. Note that each digraph G in the family defined in Theorem 4.6 satisfies the
local transitivity condition of 4.7, which implies that ED(G) = G−. So it suffices to verify
that G = G−, which follows since G is reduced and isomorphic to its complement G.
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Proposition 4.7 Let G be a digraph of order n > 1. Then ED(G) = G− if and only if for
any vertex u ∈ V (G) with eccentricity > 2 the following (local) transitive condition holds:

(u, v), (v, w) ∈ E(G)⇒ (u,w) ∈ E(G), ∀v, w ∈ V (G) and u 6= w.

Theorem 4.8 ED(
−→
Pn) is a fixed point, for n ≥ 1.

Proof. The cases n = 1 and n = 2 are easy to check separately. For n ≥ 3, let G = ED(
−→
Pn).

Let v0, . . . , vn−1 be the vertices along the unidirectional path. The edges of G consist of:

(v0, vn−1), and
(vi, vj) for all 0 ≤ j < i ≤ n− 1

The edges of ED(G) consist of:

(vn−2, vn−1),
(vi, vj) for all 0 ≤ i < j ≤ n− 2, and
(vn−1, vj) for all 0 ≤ j ≤ n− 2

Using these lists of edges, it is easy to see there is a digraph isomorphism between G and
ED(G) given by ϕ : V (G) → V (ED(G)) with ϕ(vn−1) = vn−1 and ϕ(vi) = vn−2−i for

0 ≤ i ≤ n− 2. Thus, G = ED(
−→
Pn) is a fixed point.

v0

v1 v2

v3

v4

Figure 6: An illustration of Theorem 4.8 with n = 5. The upper
left digraph is

−→
P5, the upper right digraph is ED(

−→
P5), and the lower

digraph is ED2(
−→
P5).

The last few fixed point families we will describe are all based on the following balanced
coloring property of any initial segment of positive integers of odd length.
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Lemma 4.9 Let n be an odd positive integer, and let k be a positive integer smaller than
n. For each pair {i, j} of positive integers with i + j = n, color one red and the other blue.
Then either k is red, or there is a pair (a, b) of red numbers, such that a⊕ b = k, where ⊕
represents addition modulo n.

Proof. If there is no pair (a, b) with a 6= b and a + b = k, then a bipartite graph can be
constructed in which every vertex has degree 2 except vertex k and vertex k� 2. Here k� 2
represents division modulo n (Note that since n is odd, every number k smaller than n has a
unique half modulo n). Construct the graph by beginning with k, then attaching k to n− k,
then attaching n − k to k 	 (n− k), and so on, alternating as in Figure 7 until arriving at
k � 2. At this point, k and k � 2 must be in opposite parts of the partition, since the values
in the same part as k are of the form n− j for some j ( 6= n− j) in the opposite part. This
is not possible for k � 2, since n− k � 2 = k � 2. Therefore if k is blue, then k � 2 is red, so
taking a = k � 2, and b = k � 2, we have a⊕ b = 2(k � 2) = k.

2, 3, 4, 5, 6, 7, 8, 9, 10,1, 11, 12, 13, 14, 15, 16, 17, 18, 19,20

9

18

6

12

3

15

Figure 7: An illustration of Lemma 4.9 with n = 21 and k = 9, and
k � 2 = 15. A solid dot represents the color red, and an open dot represents
the color blue.

Theorem 4.10 Let n be an odd positive integer, and let R be a subset of {1, 2, ..., n− 1}
such that for every pair {i, j} of positive integers with i + j = n, exactly one of {i, j} is a
member of R. Define Gn,R to be the directed graph on vertices {v0, v1, ..., vn−1}, where each
vi has a directed edge to vertex vi⊕k if and only if k ∈ R, where ⊕ denotes addition modulo
n. Then Gn,R is a fixed point under the ED operator.

Proof. By Lemma 4.9, for every vertex vi, the vertices vj that are not adjacent from vi

are all a distance of two steps away from vi, which makes them the vertices adjacent from
vi in the eccentric digraph ED (Gn,R). Therefore, ED (Gn,R) = Gn,R̄, where R̄ denotes the
complement of R in {1, 2, ..., n− 1}. We will show that the function ϕ : V (Gn,R)→ V

(
Gn,R̄

)
defined by ϕ (vi) = vn	i, where 	 represents subtraction modulo n, is a graph isomorphism.
The function is clearly a bijection on the vertices, so it will suffice to show that ϕ and ϕ−1

are edge-preserving. Let (vi, vj) be a directed edge of Gn,R, then j = i ⊕ k for some k ∈ R.
Therefore, n	 j = (n	 i)⊕ (n	 k), and n− k ∈ R̄, and so in Gn,R̄, there is a directed edge
from ϕ (vi) to ϕ (vj), as required. The verification that ϕ−1 is edge-preserving is similarly
straightforward.
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v0

Figure 8: An example of the digraph Gn,R of Theorem 4.10 with n =
33 and R = {1, 2, 3, 6, 10, 11, 12, 13, 16, 18, 19, 24, 25, 26, 28, 29}. Each of the
other vertices has the same pattern of adjacencies as v0, but these edges are
not shown in the figure.

This is another family of digraphs which are interesting to examine in the light of Proposition
2.1 in [3], which is included above as Proposition 4.7. The proof of Theorem 4.10 can be
modified slightly into a proof that a digraph G satisfying the conditions of Theorem 4.10 is
isomorphic to its reduced complement G−. Furthermore, Lemma 4.9 can be used to show
the local transitivity property of Lemma 4.7. Therefore from Proposition 2.1 in [3], it can be
shown that G is a fixed point under the ED operator.

Corollary 4.11 Let n be an odd positive integer, and let k be a positive integer such that
k divides n − 1, and such that (n − 1)/k is even. Define Gn,k to be the digraph on vertices
{v0, v1, ..., vn−1}, where each vi has a directed edge to vertex vi⊕j if and only if (j − 1) /k is
even. Then Gn,k is a fixed point under the ED operator.

Proof. Gn,k satisfies the conditions of Theorem 4.10, by taking R to be the set of positive
integers j with (j − 1) /k even. With this choice of R, for each j ∈ R, (n− j − 1) /k +
(j − 1) /k = (n− 2) /k, which is odd. Therefore, (n− j − 1) /k must be odd, which implies
that n − j /∈ R. This confirms that set R satisfies the conditions of Theorem 4.10, and
therefore Gn,k is a fixed point under the ED operator.

Corollary 4.12 Let P = (k1, k2, ..., km) be a palindromic sequence of positive integers, so
that ku = kv whenever u + v = m + 1, and let n = 1 + 2

∑m
i=1 ki. Define Gn,P to be the

directed graph on vertices {v0, v1, ..., vn−1}, where each vi has a directed edge to vertex vi⊕j if
and only if 2

∑q
i=1 ki < j ≤ (2

∑q
i=1 ki) + kq+1 for some q with 0 ≤ q < m. Then Gn,P is a

fixed point under the ED operator.
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v0

Figure 9: A Gn,k of Corollary 4.11 with n = 33 and k = 4. Each of the
other vertices has the same pattern of adjacencies as v0, but these edges are
not shown in the figure.

Proof. Apply Theorem 4.10, where
R ={j|2

∑q
i=1 ki < j ≤ (2

∑q
i=1 ki) + kq+1 for some q with 0 ≤ q < m}.

The complement of this set can be denoted by

R ={h| (2
∑q

i=1 ki) + kq+1 < h ≤ 2
∑q+1

i=1 ki for some q with 0 ≤ q < m}

Then subtracting each part of this inequality from n− 1 gives:

(n− 1)− 2
∑q

i=1 ki > (n− 1)− j ≥ (n− 1)− ((2
∑q

i=1 ki) + kq+1)
⇐⇒
2
∑m

i=1 ki − 2
∑q

i=1 ki > n− 1− j ≥ 2
∑m

i=1 ki − (2
∑q

i=1 ki)− kq+1

⇐⇒
2
∑m

i=q+1 ki > n− 1− j ≥
(

2
∑m

i=q+1 ki

)
− kq+1

⇐⇒
2
∑m−q

i=1 ki > n− 1− j ≥
(
2
∑m−q

i=1 ki

)
− km−q

⇐⇒(
2
∑m−q

i=1 ki

)
− km−q ≤ n− 1− j < 2

∑m−q
i=1 ki

⇐⇒(
2
∑m−q−1

i=1 ki

)
+ km−q ≤ n− 1− j < 2

∑m−q
i=1 ki

⇐⇒(
2
∑m−q−1

i=1 ki

)
+ km−q < n− j ≤ 2

∑m−q
i=1 ki
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This shows that for each j ∈ R, n − j ∈ R, which satisfies the condition for set R in
Theorem 4.10, and therefore Gn,P is a fixed point under the ED operator.

v0

Figure 10: A Gn,R of Corollary 4.12 with n = 33 and P = {5, 1, 4, 1, 5}.
Each of the other vertices has the same pattern of adjacencies as v0, but
these are not shown in the figure.
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