Noname manuscript No.
(will be inserted by the editor)

Online Bottleneck Matching

Barbara M. Anthony - Christine Chung

June 19, 2013

Abstract We consider the online bottleneck matching problem, whererver-
vertices lie in a metric space amidrequest-vertices that arrive over time each must
immediately be permanently assigned to a server-vertexgblal is to minimize the
maximum distance between any request and its server. Becaualgorithm can
have a competitive ratio better thérik) for this problem, we use resource augmen-
tation analysis to examine the performance of three alymist the naive GEeDY
algorithm, FERMUTATION, and BaLANCE. We show that while the competitive ratio
of GREEDY improves from exponential (when each server-vertex hasenesr) to
linear (when each server-vertex has two servers), the ctitmpeatio of PERMU-
TATION remains linear when an extra server is introduced at eavkrseertex. The
competitive ratio of BLANCE is also linear with an extra server at each server-vertex,
even though it has been shown that an extra server makessiiacrcompetitive for
the min-weight matching problem.

1 Introduction

We consider the online bottleneck matching problem, whexeawe giverk server-
vertices located in a metric space, &nequest-vertices that arrive over time. As each
request-vertex arrives, it must be immediately and permigymatched to a server-
vertex. Our goal is to minimize the maximum distance betwa@nrequest-vertex
and its assigned server-vertex.

The standard technique for studying algorithms for onlir@bems is competi-
tive analysis. Theompetitive raticof an algorithm is the worst-case ratio of the cost

Barbara M. Anthony
Mathematics and Computer Science Department, Southwedteversity, Georgetown, TX
E-mail: anthonyb@southwestern.edu

Christine Chung
Department of Computer Science, Connecticut College, Neadon, CT
E-mail: cchung@conncoll.edu



2 Barbara M. Anthony, Christine Chung

of the algorithm’s solution to the cost of the optimal offliselution (which knows
all request locations in advance). Kalyanasundaram anksRf093) proposed an
algorithm, FERMUTATION, in the context of the corresponding onlin@n-weight
matching problem, where the goal is to minimize the totalaiegrage) distance be-
tween request-vertices and server-vertices. Withoutfptbey mentioned that £Rr-
MUTATION achieves a competitive ratio 8k — 1 for the online bottleneck matching
problem. Idury and Schaffer (1992) then proved that norélgm can achieve a com-
petitive ratio better than approximatelybk. The basic ®EEDY algorithm, which
assigns each arriving request to the nearest availablerseevtex, has a competitive
ratio that isf2(2*) (see Section 2).

The prohibitive general lower bound on the problem and treeedingly poor
performance of a simple and natural algorithm likeEEDY motivate us to consider
a benchmark that is less formidable than the optimal salytio order to attain a
more informative analysis of these algorithms. Specifijcalle employ aweak ad-
versary modebf analysis in pursuit of further insight on the performant¢hese
(and related) algorithms for the bottleneck matching probIThe weak adversary, or
resource augmentatiomodel of analysis has long been used effectively in theystud
of matching and scheduling problems (e.g., Kalyanasumdarad Pruhs (2000a,b);
Phillips et al. (2002); Chung et al. (2008)). Results ol#dinnder this model can be
viewed as “bicriteria” results, which have also become darimative and success-
ful approach in other sub-fields of algorithms (e.g., Rowgtdgn and Tardos (2002);
Hartline and Roughgarden (2009)).

In our setting with resource augmentation, we ask how waell dhline algo-
rithm performs when it has multiple servers (namely two) gawer-vertex, while
the optimal offline solution only has one; thus the onlinealym can service twice
as many request-vertices with each server-vertex. Faligudalyanasundaram and
Pruhs (2000b), we will use the terhalfOPT-competitive ratido refer to the com-
petitive ratio of an online algorithm with server-vertidgbsit have two servers when
compared with an optimal offline solution with each servert®x having a single
server.

Resource augmentation was used to study the corresponaling onin-weight
matching problem in Kalyanasundaram and Pruhs (2000by. Sth@ved that by hav-
ing two servers per server-vertex, the competitive rati&eEEDY improves from
6(2%) to a halfOPT-competitive ratio @ (log k). They then proposed an algorithm
BALANCE, which is a modified form of @EEDY that is more judicious in its use of
the additional server at each server-vertex. They showBheaANCE has a halfOPT-
competitive ratio ofD(1).

Our results for the online bottleneck matching problem kop> 2 are as fol-
lows. (Naturally, when there is a single request-vertexserder-vertexf = 1) the
algorithms all perform optimally.)

1. GREEDY has a competitive ratio of at lea&t~!, and at mosk2¢—1.

2. PERMUTATION (proposed in Kalyanasundaram and Pruhs (1993) and Khuller
et al. (1994)) is(2k — 1)-competitive, and this is tight. This is comparable to
its performance for the min-weight objective, for which & also (2k — 1)-



Online Bottleneck Matching 3

Table 1 Lower bounds and upper bounds for the various algorithmisb@ttleneck objective results are
from the present work, though th&RMUTATION bounds without resource augmentation were hinted at in
Kalyanasundaram and Pruhs (1993). The result markedidymmediate from the corresponding bound
without resource augmentationABANCE is only defined in the resource augmentation setting.

Algorithm
Objective Adversary ®EEDY PERMUTATION BALANCE
LB UB LB UB LB uUB
min-bottleneck ~ CFT 2k=1  g2k=1 2k -1 26k—1 N/A NA
halfOPT  (k+1)/2 k-1 k k k) k-1
min-weiaht OPT? 2k—1 2k—1 2k—1 2k-—1 N/A  N/A
9 halfoPT O(logk) P o) 2k -1t o(1)b

a Kalyanasundaram and Pruhs (1993)
b Kalyanasundaram and Pruhs (2000b)

competitive. ThisO(k) upper bound on the ratio is asymptotically tight with the
£2(k) general lower bound for the problem of Idury and Schaffe®@)9

3. GREEDY has a halfOPT-competitive ratio of no more than-1). Note that this is
an exponential improvement in competitive ratio from siyriphving two servers
available per server-vertex.

4. GREEDY has a halfOPT-competitive ratio of at ledét + 1)/2. Interestingly,
this is still exponentially worse than its performance foe torresponding min-
weight problem, where it has a halfOPT-competitive rati@ hifg £ (Kalyanasun-
daram and Pruhs 2000b).

5. BALANCE (proposed in Kalyanasundaram and Pruhs (2000b)), a modiified
of GREEDY designed for the setting of multiple servers per servetexehas a
halfOPT-competitive ratio of — 1.

6. BALANCE has a halfOPT-competitive ratio of at leggt+ 1)°e(*+1)—1 = (k).
This is in stark contrast with the fact thanBaNCE has a halfOPT-competitive
ratio of O(1) for the corresponding min-weight problem (Kalyanasundeaad
Pruhs 2000Db).

7. PERMUTATION has a halfOPT-competitive ratio éfand this is tight. (Note that
having two servers per server-vertex does not impraRMRUTATION’S asymp-
totic performance guarantee, as it did so dramatically @iREEDY.)

Table 1 summarizes these and related results.

While resource augmentation has the potential to improgetimpetitive ratio,
these results suggest that in some sense the bottleneckiobje more difficult than
the total distance objective. Resource augmentation lgreatps GREEDY for the
minimum weight objective, but none of the three algorithmesalx the2(k) bar-
rier for the bottleneck objective. Perhaps this can be éxpthby noting that for the
minimum weight objective, any sub-optimal assignment igsgated by the total cost,
whereas with the bottleneck objective, a poor assignmentloeninate, even with re-
source augmentation. Our results suggest thireEDY can be a reasonable choice of



4 Barbara M. Anthony, Christine Chung

algorithm for the bottleneck objective with resource augtagon, due to its relative
simplicity, and comparable performance talRNCE and R-ERMUTATION, despite
its decay in performance as its adversary gets stronger.

Section 2 provides some results for the algorithms withesburce augmenta-
tion. We then consider three algorithms with resource augatien: GREEDY (Sec-
tion 3), BALANCE (Section 4), and PRMUTATION (Section 5).

2 Preliminaries

Formally, the online bottleneck matching problem is ascfeli: Given a collection
S = {s1,s2,..., s} Of server-vertices in a metric spagé, the online algorithm4
sees over time a sequence of request-verfites{ry,rs, ..., 7} also inM. When
request-vertex; arrives, algorithmd must assign a server-vertey ;) to service that
request, with cost equaling the distantie;, s,(;)) (we use the terms cost and dis-
tance interchangeably). Once an assignment is made, ibtharchanged. Whilgl
does not know the sequence of requests in advance, its goahisiimize the bottle-
neck distance of the overall assignment, that is minimiae; d(r;, s,(;)). We refer
to the assignment (or “matching”) that optimizes this otijecas OPT. As is typical
of online problems, we use competitive analysis, and segkriomize the worst-case
ratio of the online bottleneck cost to the optimal (offlin@tteneck cost. An online
algorithm isa-competitive if this ratio is at most for all possible instances. We use
cost(-) to represent the bottleneck weight of a particular assigrineeg.cost(OPT).
Throughout the papet, > 0 represents an arbitrarily small constant, typically used
to break ties when assigning requests to servers.

We now prove a few basic results about the online bottleneatcining prob-
lem without resource augmentation that have been hintedtheiexisting literature
(e.g., see the Conclusion of Kalyanasundaram and Pruh8))1%9e consider both
the standard &EEDY algorithm, as well as BRMUTATION, introduced by Kalyana-
sundaram and Pruhs (a similar algorithm was also studiedhuliét et al. (1994)).
Note that the algorithm BLANCE is only defined when there are multiple servers per
server-vertex.

2.1 Analysis of REEDY

As its name suggests,REEDY assigns the nearest available server at a server-vertex
to each request-vertex as it arrives. While this algorittam perform well on some
instances, @EEDY is exponentially bad against OPT. In fact, this can be exduitiyy

the same instance of Kalyanasundaram and Pruhs (1993 )etmatrstrates 8EEDY

is exponentially bad against OPT for the correspondingativie of minimizing total
weight.

Theorem 1 The competitive ratio ofGREEDY is at least2*~! for the bottleneck
matching problem.



Online Bottleneck Matching 5

Proof Let M be a subspace of the real line, with the standard distancecm®ét
s1 = —1l—eands; = 2071 —1for2 < i < k. Letr; = 2" —1forl <

i < k. GREEDY assigns request; to s;,; for i < k (as the request-vertices and
server-vertices are collocated), and then must assigo s, for a bottleneck cost of
2k=1 1 ¢. OPT, however, matches eachto the corresponding;, giving cost(OPT)
=1+4e

Theorem 2 The competitive ratio ofGREEDY is at mostk2*~! for the bottleneck
matching problem.

Proof Let N; be the partial matching constructed byrEeDy afteri requests have
been revealed. Let; be the cost of the bottleneck edgeNi. (Ties do not matter, as
the concern is the cost, not the particular bottleneck ¢@dget.b; be the cost of the
bottleneck edge id/;. We can assume, without loss of generality, by renumbering
the vertices that BEEDY services:; with s;. We prove inductively that; < 2~ 1b;.
Fori = 1, M; = N; and the result follows. Now assume that the result holds for
¢ — 1, and we verify that it holds for.

If the weight of the edgér;, s;) selected by GEEDY to servicer; is at most
w;_1, then we are done. By Kalyanasundaram and Pruhs (1993)¢gigbvof(r;, s;)
is at most the sum of the weights of the edgeddnand the edges itV;_1, and the
sum of the weights idV,_; is at mosi~! — 1 times the sum of the weights ;.
Thusw; is at mosi~* times the sum of the weights it¥;, as the minimum weight
matching can only increase with an additional request.igothat the sum of the
weights inM; is at most the number of edges M; times the weight of the most
expensive (i.e. bottleneck) edge gives that< i2°~'b;. Since this holds for all,
andb, = OPT, the result holds.

2.2 Analysis of ERMUTATION

Informally, PERMUTATION assigns requests as follows. Note that the assignment of
request-vertices to server-vertices is a matching. To h@oserver for request,
consider the optimal matching of the fiistequests, and the optimal matching of the
firsti — 1 requests. There is exactly one server that is matched irotheef scenario
and not in the latter. BRMUTATION matches that server to the current request
Observe that BRMUTATION guarantees that if a request arrives at an unused server-
vertex, it is matched to the server at that server-vertex.

More formally, as defined in Kalyanasundaram and Pruhs (18&3R; C R be
the firsti request-vertices. partial matchingof R; is a perfect matching aR; with
a subset of the servers 6f Let M, and Py be empty. Definel/; to be the edges
that form a minimal weight partial matching d®; where the number of edges in
M; — M;_, is minimized, choosing arbitrarily if multiple such matobs exist. Let
S; C S be the server-vertices incident to an edgelin Let P; denote the partial
matching constructed byERMUTATION after the firsti requests. PRMUTATION
constructsP; 11 by computing)M; 4, assigning- ;1 to the unique server-vertexc
Si+1 — S, and adding that edge to the matchiRg



6 Barbara M. Anthony, Christine Chung

We now show that PRMUTATION is (2k — 1)-competitive, which was stated
without proof in the Conclusion of the preliminary versionkalyanasundaram and
Pruhs (1993). The proofis similar to the proof in Kalyanatanam and Pruhs (1993)
which shows that PBRMUTATION is (2k — 1)-competitive for the online minimum-
weight matching problem.

Theorem 3 PERMUTATION is (2k—1)-competitive for the bottleneck matching prob-
lem.

Proof We prove inductively thatost(P;) is at most2; — 1 times thecost(M;).
Clearly, P, = M, and the inequality holds. Assume that the inductive hygsith
holds fori — 1, thatis,cost(P;—1) < (2(i — 1) — 1) - cost(M;—_1).

Assume BRMUTATION services request; with server-vertexs;. Consider the
bottleneck distance of;. By construction,?; = P,_; U r;s;. Thus,cost(P;) is
the maximum ofcost(P;—1) and d(r;, s;). Note also thatost(M;_1) is at most
cost(M;). Thus, if thecost(F;) is cost(P;_1), then by induction it is at moge (i —
1) — 1) - cost(M;_1), which is at mos{2i — 1) - cost(M;). Otherwise, theost(F;)
is d(’l‘i, Sj).

Let M’ be the union of the matchint/;_, and the edge;s;. Let H be M; & M.
l.e., letH be the set of all edges that are in exactly on@GfandM’. Intuitively, H
captures the cascading effect of reassignments upon tivalaf the latest request
r;. (H appears again in Section 5, where it is discussed furthecpnsists of one
alternating cycle (possibly empty). By the triangle indiyave have thati(r;, s;) is
atmost the total cost of the edgedin less itself. Thusi(r;, s;) is at most the weight
of M,_, (defined as the sum of the costs of the edgédjn;) plus the weight of\/;.
Recall thatcost(M;_1) < cost(M;). Furthermore, since the bottleneck distance is
the largest edge in the matching, the sum of the weights cddiges in the matching
is at most the number of edges times the bottleneck weiglis, -, s;) is at most
(2i — 1) - cost(M;). O

Theorem 4 The competitive ratio OPERMUTATION is at least2k — 1 for the bottle-
neck matching problem.

Proof Let M be a subspace of the real line, with the standard distancecm®&ét
si=1forl1 <i<k.Letr; =i+ .5 +eforl <i < k. PERMUTATION matches;
to s;+1 when it exists, and matches the final requestto s, for a bottleneck cost
of k — .5 + . OPT assigns; to s;, so all edges have a cost 6f+ ¢, which is thus
cost(OPT). Thus, the performance on this instanc@is— 1 + 2¢) /(1 + 2¢), which
approacheg8k — 1. (Thee could be removed if ties can be broken arbitrarily.) O

Resource augmentation was used in Kalyanasundaram ansl2040b) to show
that, for the min-weight objective, &EDY has a halfOPT-competitive ratio 6flog k),
in contrast with itsf2(2%) competitive ratio without resource augmentation. Moti-
vated in part by these results, we turn to a resource augtmantetting for the
bottleneck objective.



Online Bottleneck Matching 7

----OPT ——GREEDY

Fig. 1 An example response graph.

3 Bicriteria Analysisof GREEDY

Noting that “the poor competitive ratio of an intuitive gdgealgorithm may not re-
flect the fact that it may perform reasonably well on ‘normaputs”, Kalyanasun-
daram and Pruhs (2000b) adoptsvaak adversary modein which the adversary
has fewer resources than the online algorithm. Their wodkests the online trans-
portation problem, which is a generalization of the mingi®imatching problem.
We perform a similar analysis for the bottleneck matchingbem, and show that
the improvement for EEDY is more limited for our objective.

While each server-vertex in OPT can service exactly oneastyjthe online algo-
rithm can assign requests to two servers at each servexv@itus, as in Kalyana-
sundaram and Pruhs (2000b) we say thatithBOPT-competitive ratiof an on-
line algorithm A is the supremum over all instancéswith at mostk requests of
A(I)/OPT(I) whereA has two servers available at each server-vertex, while OPT
only has one.

We now show that the halfOPT-competitive ratio forRE=DY is linear in the
number of requests. Since each server-vefidras two servers in the online setting,
we denote them by! ands? as needed. Without loss of generality, we assume that
s? is not used unless! is already in use. The adversary has osflyavailable to it.
We first prove a lemma about tihesponse grapl, defined in Kalyanasundaram and
Pruhs (2000b) to b&' = (S U R, E), whereE is the set of edges that includes the
online edge(r;, s,(;)) and adversary edge;, s;) for each request;. See Figure 1
for an example.

Lemmal Each connected component@fcontains exactly one cycle.

Proof By Lemma 1 of Kalyanasundaram and Pruhs (2000b), there isoat one
cycle in each connected component of the response d@rajgo it remains to show
that there is at least one cycle in each connected compohéhtim do this, we will
show that a connected componéhof G cannot be a tree. Since a tree must have one
more vertex than edges, it suffices to show thdtas an equal number of edges and
vertices. We first observe that, because OPT is a perfecttitdgpanatching between
server-vertices and request-verticegdnany connected component @fmust have

an equal number of server-vertices and request-vertiogise(wise, some connected
component would have one fewer server than request, and @RIOwot be able to



8 Barbara M. Anthony, Christine Chung

match that extra request to any server.) Hence the numberttes inC' is 2 - R¢,
whereR¢ is the number of request vertices@h Next we observe thal’ must also
have2 - R edges since each request-vertexdmmust have exactly two incident
edges (one from the online algorithm and one from OPT). We Imaw shown that
C has an equal number of vertices and edges. O

Theorem 5 The halfOPT-competitive ratio dBREEDY for the bottleneck matching
problem is at mosk — 1 for & > 2 server-vertices.

Proof Let(r;, s;) be the online bottleneck edge in the response gr&p(if there are
multiple edges with the maximum bottleneck cost, pick orstearily.) Let (r;, s;)

be the edge in OPT that serves requestf s; = s; then we're done. So we only
consider the case thaf # s;. Now consider the connected component containing
r;. By Lemma 1 this connected component has exactly one cyoke. tRat this cycle
may have trees joined to it at the vertices on the cycle. Qbgbat all such junctions
must represent a server-vertex, since each request caatraest two incident edges

in the response graph, one for the online edge and one foptiteal edge. Consider
separately the cases wherlies on the cycle, and when it does not.

If r; is a vertex on the cycle, then since only server-verticesbzjunctions,
both the online and offline edges incident:grmust lie on the cycle. Removing the
online edge(r;, s;) from the cycle yields a tree which can be rooted-atSince
there aré: request-vertices andserver-vertices, there are at mastvertices in the
tree. Furthermore, the tree contains alternating levetepfer-vertices and request-
vertices. Each request-vertex has one child (the servéexehosen for it by OPT),
and each server-vertex can have up to two children (the @Bliges).

To upper bound the cost of the edgg, s;), it suffices to upper bound the distance
of the shortest path from; to some server-vertex. with s unused, since REEDY
pickeds; instead ofs,.. Sincer; is the root of the tree, it suffices to find the cost of
a path requiring the minimum number of edges that must beitsad to arrive at a
leaf. Consider a version of the tree where the edges from @estdo its child are
contracted, thus resulting in a binary tfBevith at mostk vertices. Letcr < k refer
to the number of vertices in the contracted tree. Since abfaliry tree would have
log(kr) levels, a leaf off’, which may or may not be full, is reachable in at most
log(k7) edges. Uncontracting the edges (at most one per servexyerdicates that
in the original graph, there are at masg (k1) optimal andog (k1) — 1 online edges
between the root and some leaf, calijt

Now consider the cost of the path in the tree frejto server-vertex,, as in
Figure 2. By definition, any edge used in OPT must have costoat mst(OPT).
Since all leaves of the tree are incident only with one edge)BT edge, the edge
(ra, $4) is an edge in OPT, and thus has cost at mast(OPT). Proceeding from,
to the root, the next edge on the path is an online edge, ¢all,it;,). GREEDY chose
to assignr, to s, rather thans, which had a server available, and thus has cost at
most the cost of the edge frofn,, s, ), which is again at mosst(OPT). The next
edge in the path(r;, sp) is an edge in OPT, and thus has cost at neost(OPT).
The next edge, the online edge,, s.) again was again chosen byRGEDY over
the edge(ry, s.) and thus has cost at most the distance in the tree froio s,,
which is bounded by the three edges previously mentionetdrpath, for a total



Online Bottleneck Matching 9

----OPT ——GREEDY
Ti
1
1
i
/ \
7:/\' Tlc
1 1
] 1
Sk Se
e
1 1 1 1
1 1 1 1
So S Sf Sp
AN N ~ ~
T T T T e T
1 1 1 1 1 1 1
3 s, § s, Sy § s
s U m P NG
’I“|5 7:7' Tlh rld
1 1 1 1
1 1 1 1
Ss Sy Sh Sd

Fig. 2 The length of the bottleneck edge;, s;) (not pictured) is bounded by the distance from rogto
leaf s,, in this example tree, a subgraph of the response graph.

cost of at mos8 - cost(OPT). This process continues, with successive edges in OPT
having cost at mostost(OPT) and successive online edges having cost at most
(2" — 1) - cost(OPT) whereh represents the height of the request in the tree with
the online edges contracted. As the edge incident o the subtree is an edge in
OPT, the final edge in the path from to r; has cost at mostost(OPT'). Thus,
the total cost of the path is at mastst(OPT) for each of thdog(k) edges in OPT
and Y15 (20 — 1) . cost(OPT) for the online edges, giving )&~ 2 .
cost(OPT) = (2'°8F) — 1) . cost(OPT) = (k — 1) - cost(OPT). Hence, since
GREEDY assigned; to s; instead ofs,, the online bottleneck edge cost is at most
(k—1) - cost(OPT).

Now consider the case whergdoes not lie on the cycle. Removifg, s;) from
the response graph partitions the original connected caemtdnto two connected
components, with; and the original cycle now in separate connected componksits
the original connected component contained exactly onkectlee connected com-
ponent rooted at; is a tree. By the same process, the upper bound on the distance
fromr; to some leaf server-vertey, is at most(k — 1) - cost(OPT). O

The example used in Kalyanasundaram and Pruhs (2000b) wadpra lower
bound for REEDY for the online transportation problem gives a lower boun# @&f
for GREEDY in this setting. We prove a slightly improved lower bound bft- 1) /2
in Corollary 1 in Section 4.

4 Bicriteria Analysis of BALANCE
In this section we consider theaBANCE algorithm detailed in Kalyanasundaram and

Pruhs (2000b). We first define some convenient notation foresource augmenta-
tion model. As in the previous section, each server-vesier S is said to have a



10 Barbara M. Anthony, Christine Chung

primary server! and a secondary servetf. Thus, while there aré vertices inS,
one for each request iR, the online algorithm effectively has: servers to choose
from. For BALANCE, thepseudo-distanciom a request; to a primary serve,c} is
the actual distancé(r;, s;), while thepseudo-distanc&om the same request to
the secondary serveg is ¢ - d(r;, s;), for a constant > 1. (In Kalyanasundaram
and Pruhs (2000b),@> 11 was specified.) BLANCE then uses GEEDY to assign
arriving requests to servers, based on their pseudo-dssa(iThus BLANCE with
¢ = 1 is precisely ReeDY.) Note also that BLANCE only applies in the resource
augmentation setting because it uses primary and secoselasrs explicitly.

We begin with a lower bound on the halfOPT-competitive rafi@ALANCE.

Theorem 6 The halfOPT-competitive ratio @ALANCE for the bottleneck matching
problem is at least? + 1)l°s(k+ D=1 — (L), wherek is the number of requests and
¢ is the constant in the definition GALANCE.

Proof Consider the following example on the line, where at eachtion the number
of requests and server-vertices are powers of two.lgtlq, Lo, ..., L,, be the
m+1 server-vertex locations, whefg has2™~* server-vertices. Similarly, the+1
request locations a®y, Ry, Ro, . . ., R,, whereR; has2™ " requests. LeL, = —c,
Ry =0,andforl <¢<m, L; = R;.

We now determine the most extreme placement for the seerticgs so that
OPT will assign requests &t; to servers af.; but that BALANCE will choose not to
send any requests g, until the final request. Thus OPT will have a bottleneck cost
of ¢ while BALANCE will pay ¢ plus the location of the final server. Sineés fixed,
the ratio will grow with the locatiori.,,,.

We break ties at our convenience. (Alternatively, a small 0 could be used to
perturb the locations slightly to enforce such choicés.)must be atl so that the
secondary servers dt; (with a cost ofc - 1) are equally desirable as the primary
servers al (cost ofc) for the requests aky. L, must be chosen so that the requests
at R, consider the secondary serverd.at(with costc-d(L4, L2)) as desirable as the
primary servers al., = —¢, with costc + 1. Thus,d(Ly, L2) = % placingL, at
2 + 1. Repeating this process, can be placed g€’ _, (©) 7= forall 1 <i <m.

i
g/ it

We now find a closed form for the location of servgy,, as shown in (1).

=2 (a5 (e (5 0)5) () @

Jj=1 J=0

Using the binomial theorem on the summation gives the ex'pms(% +1)" —c.
Thus, if L, is the rightmost server, the bottleneck distance fragrio L., is c(% +
1)m.

Note that the total number of requestsiis= Y~  2¢ = 2™+ — 1. Thusm =
log(k+ 1) — 1. Thus the bottleneck cost forBANCE is ¢(2 + 1)ls(k+1)~1 wherek
is the number of servers/requests, and the bottleneck@o®HT isc. If ¢ is a fixed
constant, then the lower bound on the competitive ratid is- 1)ls(-+1)=1, 0

Corollary 1 The halfOPT-competitive ratio dGREEDY for the bottleneck matching
problem is at Ieas{"‘g—l, wherek is the number of servers.



Online Bottleneck Matching 11

Proof Noting thatc = 1 is precisely REEDY, observe that i = 1 this gives a
competitive ratio oplee(k+1)—1 — EtL,

We now show that the upper bound on the halfOPT-competititie of BAL -
ANCE is a matching) (k).

Theorem 7 BALANCE has a halfOPT-competitive ratio éffor the bottleneck match-
ing problem.

Proof The same argument as for theRE&DY upper bound (Theorem 5) applies.
Note that it holds because the server-vergxised in the argument is a leaf of the
tree, which means the online algorithm has not used eithés aervers. Thus the
pseudo-distance to that vertex imBANCE is the same as the original distance in
GREEDY.

5 Bicriteria Analysis of PERMUTATION

We next consider BRMUTATION with resource augmentation. As before, each server-
vertexs; has two servers in the online setting, the primary sesyand the secondary
servers?. Without loss of generality, we assume that a secondargsean only be
used if the corresponding primary server is used. Again,avepare BERMUTATION

to OPT which can serve exactly one request per server-vertex

We now note how the definition of ERMUTATION from Section 2.2 applies to
the resource augmentation setting. ISét9 be the set ok servers available to the
online algorithm. Then partial matchingof the firsti requests is a perfect matching
of these requests with a subsetf‘9. Define M, to be the set of edges in a minimal
weight partial matching of the firgtrequests that is “most similar” td/; 1, in the
sense that the number of edgesiifi — M;_; is minimized. LetS; C S**9 be the
set of servers incident to an edgelify. By convention M, is empty.

Suppose that BRMUTATION services request; with a servers? at vertexs;.
Then defineM’ to be the union of\/;,_; with the edge(r;, sf). Let P; denote the
partial matching constructed byeRMUTATION for the firsti requests.

Intuitively, it may seem that BRMUTATION should benefit substantially from re-
source augmentation; the availability of a secondary ses@emingly allows the al-
gorithm to ‘correct’ itself if a request arrives and findstttiee primary server it would
have used in OPT was already in use. Y&ERRMUTATION has a halfOPT-competitive
ratio of £ and this is tight, as illustrated by the following lower balinstance and a
matching upper bound guarantee. This is in comparison wgtbampetitive ratio of
2k — 1 in the absence of resource augmentation.

Theorem 8 PERMUTATION has a halfOPT-competitive ratio ¢?(k) for the bottle-
neck matching problem.

Proof Fix a small constant > 0. Without loss of generality, let be odd. Con-
sider the following instance, as depicted in Figure 3o+ 9. Server vertices and
requestss;,r; for 1 < ¢ < k with 4 odd are placed along the line, in the order



12 Barbara M. Anthony, Christine Chung

=My PERMUTATION — OPT
L T
1+e€ 1 1+e€ 1 1+e€ 1 1+e€ 1 1+4+e€
S1I/=/—=——=""—— S3T=—=T 3 Sp—== 5 ST S9=——==T9
// 1 //~'i // 1 // 1

S//+2€ %—‘1—26 //—‘1—26 //4-26
2 54 S6 S8

Fig. 3 Even with resource augmentationE ®MUTATION'’S cost can still bé: - cost(OPT).

s1,7r1,83,73, ..., 5k, 7L Where the distance betweepandr; is 1 + ¢, and the dis-
tance between; ands; o is 1. For eachi > 3, let request;_; be1 away froms;,
and let server-vertex;,_1 be at a distance df+ 2¢ fromr;_1. All other distances are
additive based on this graph.

Since ERMUTATION assigns requests based bf, note that)/; assigns- to
s3. Thus, ERMUTATION does the same. If/,, this assignment remains, anglis
assigned ta3, and again BRMUTATION behaves identically. In generalf; for j <
k behaves as follows: jf is odd,r; is assigned t@;+2 and ifj is eveny; is assigned
to sfH. PERMUTATION’s assignments are identically/; for j < k. Naturally, this
pattern cannot continue for requegt observe thafl/, that shares only about half
of its edges with\/;,_; . In particular, M}, assigns-; to s! for i odd, and assigns; to
s§+1 for j even. Thus, PBRMUTATION assigns the final request to the only server
used in)M;, that was not used it} _1, that is,s. Hence, RRMUTATION assigns
to s1, for a bottleneck cost of + k—gle (its other assignments all have cajt

Observe that OPT matches eagho its corresponding;, for a bottleneck cost
of 1 + 2e. Hence, BRMUTATION has a halfOPT-competitive ratio 6f(k). O

We now develop a sequence of lemmas which show ¢h&i(PERMUTATION)
is at mostO(k) - cost(OPT) for any instance. As in Kalyanasundaram and Pruhs
(1993), letH := M; @ M'. For convenience, we say that a serveinid{ if there
is an edge ind incident on the server. Lemma 3, which says that any givereser
vertex appears at most oncefify uses a “displacement sequence” in its proof which
provides some intuition for the choice &f.

Lemma?2 The servers used i/’ are exactly the servers usedid;.

Proof The name BRMUTATION in Kalyanasundaram and Pruhs (1993) comes from
maintaining the invariant that “for all, the vertices inS incident to an edge id/;

are exactly the vertices if that are incident to an edge #.” By Lemma 3.2 of
Kalyanasundaram and Pruhs (1993)and.S;_; differ by exactly one server. Thus,
by definition of how ERMUTATION choosess?, at each step, M; and M;_; U
(r:,5%) have used the same servers. O

Corollary 2 H is a single alternating cycle.



Online Bottleneck Matching 13

Proof As in Kalyanasundaram and Pruhs (1993), this follows imiaedlf from server
vertices in)M; and M’ being identical (Lemma 2). O

Lemma3 If s} isin H, thens? is notin H, and if s is in H, thens} is notin H.

Proof Suppose for the sake of a contradiction tHatontains both the primary server
and corresponding secondary server for sem®y Lemma 2,5} ands? must each
be used in bottdZ; and in)M’. Letrequests, andr;, be assigned tg; ands?, respec-
tively, by matching)/;. Let requests/, andr; be assigned te} ands?, respectively,
in M’. To prove the lemma, it suffices to prove the following claim.

Claim: if 7/, # r, andr, # ry, thenr;, = r, orr, = ry. In other words, at least
one of the two requests matched to a serves,ah M; must also be matched to a
server ofsg in M'. Assume not. Se), # r, andr), # ry, andr; # r, andr} # ry.
Let s; be the server-vertex assignedrdn M.

Cases; # s;. Then, sinceM’ = M;_, U (r;, s;), in M;_, we must also have
rl, — s¢ andr, — s¢, where “=” means “is assigned to.” So upon the arrivabof
in the transition from\/;_, to M;, bothr/, andr; were displaced by, andr;.

Define thedisplacement sequence gfto be a sequence of server vertices and
requests affected by the arrivalqf written as follows:

Ty —> S; €——T1 —> 81 ¢-——T9 —> So...

where forward-edges are froid; and backward edges are fran,_;. Here,r; is a
request that was “displaced” frompupon the arrival of;; it was displaced to server-
vertexs;. Thenry is a request that was displaced fremby 1, andss is the server-
vertex it was displaced to, and so forth. Note that each semmtex in this sequence
can only have one incoming backward edge because it onlyfe@imooming forward
edge. Further note that if a server-vertex is not in the disginent sequence of,
then it must be matched to the same requests as it wag;in, since otherwise
the optimality of M;_, or M; or the assumption thal/; is the most similar optimal
matching toM;_; would be violated. S@, must be in the displacement sequence
of r;. Sinces, has two displaced requesig, andr;, thens, must appear twice in
the sequence. But if it appears twice in the sequence, tree th a “cycle” in the
sequence. Consider the displacements just in this cycketdthl cost of the forward
edges in the cycle must be lower than the total cost of thevsaickedges, otherwise
this cycle would not be present in the displacement sequefceg it would just be
cut out altogether (by optimality a¥7;). But if the total cost of the forward edges is
less than the backward edges, then_, was not optimal.

Cases; = s;. Without loss of generality, let us assume thgt= ;. Thus in
M, _1, only one request was assignedt@nd it was-,. So upon arrival of;, v, was
assigned tas, andr;, was replaced by,. This means in the displacement sequence
of r;, sy again must appear twice, giving the same contradiction disdrprevious
case. O

Now consider the server-verticdg; uses exactly once (i.e. only their primary
servers). The next lemma says at most one of these servaregsran appear iff.

Lemmad4 Lets! be in H. If an edge ofM; is not incident ons?, then for all other
serverss; in H, an edge of\/; must be incident o?.



14 Barbara M. Anthony, Christine Chung

Proof Note that by assumption, a secondary server cannot be utes$uts primary
server is used. Recall that := M; @ M’. Consider the arrival of;, and the change
that occurs betweehl!; _; andM;. If r; is assigned by, to a server that was unused
in M;_1, then by definition of BRMUTATION, s; = s;, and hencél/’ = M,. Thus
H is empty, and no primary servers appeafin

Ifin M, request; is assigned to a server of vertexthat was used id/;_, the
request assigned to that serverlify_; must be reassigned, or displaced. Thus, we
can construct a displacement sequence afenoted by a sequence of server-vertices
and requests affected by the arrivabgfwritten as follows:

Ty —> 8; €-—T1 —> 81 ¢«——T'g —> S92+ 8¢

where, again, forward edges are frdf) and backward edges are fran; ;.

Note that by Lemma 2, the servers usedipare exactly those used if’. Thus,
sinceM’ = M;_, U (r;, s;), s; is used once more if/; than it is inM;_,, and all
other server-vertices are used the same number of timek as inM;_.

Only server-vertices that are in the displacement sequesicappear irf{; all
others have exactly the same requests assigned to th&mamd M.

Consider an arbitrary servey in the displacement sequence that has its primary
server but not its secondary server useddpn Look at the displacement sequence
from s, to s;. Since the secondary serversatis unused inV/;, ;1 was not forced
to be displaced fromy, to s, but rather could have used said secondary server at
s¢. Thus, the forward edges (those fradimy) in the displacement sequence frepto
s¢+ must cost less than the backward edges (those frbm ). But this contradicts the
optimality of M;_1, since the assignments that represent these forward edgkk c
have been made if/;_; as well. Hence, there can be no edges frgnto s;, and
thus the only primary server in the displacement sequeratecttn be used without
the corresponding secondary server being used is the fieakon O

Theorem 9 PERMUTATION has a halfOPT-competitive ratio 6¥(k) for the bottle-
neck matching problem.

Proof Let ak be the number of primary servers used lBRRUTATION. (This is the
same as the number of primary servers used/y) Since a secondary server is only
used if its corresponding primary server is used, therg re «)k server-vertices
with neither their primary nor secondary server used. Sexaetly k requests are
served, there must bg — «)k secondary servers used. Together these guarantee
1>a> 1.

Let the bottleneck edge of the finaERMUTATION assignment bér;, s;). Now
consider the graph off after the arrival ofr;. Recall that by Corollary 2H is a
single alternating cycle. As in Kalyanasundaram and PraB83), by the triangle
inequality, the weight of the newest ed@g, s;) is at most the aggregate weight of
the edges il minus its weight/(r;, s;). Thus, if we can bound the number of edges
in H by n, then the bottleneck edge fOERMUTATION is at mostn — 1 times the
bottleneck edge i/;, as the cost of the bottleneck edge only increases ftgm,
to M;.

If for every primary server that is used M;, the corresponding secondary server
isalsousedid/;,i.e.,a = % then by Lemmas 3 and 4/ is an alternating cycle with



Online Bottleneck Matching 15

at mostk /2 server vertices (and the same number of requests), for atinsalges. If
instead the number of primary servers used exceeds the mafrdecondary servers
used, themk — (1 — a)k > 1 which guarantees that > 1. By Lemmas 3
and 4,H contains at mosfl — «)k + 1 servers, and thus the number of edges in
H is maximized when is as small as possible. Plugging in the lower boundvon
gives% servers, guaranteeing at mdst- 1 edges inH. Hence, in either case,
PERMUTATION costs at mosk more than the bottleneck edgei;; the optimality

of Mj, and the bottleneck edge @f; monotonically non-decreasing asncreases
complete the proof. O

6 Conclusion

Resource augmentation results in a substantial improvemgre performance of the
GREEDY algorithm for the bottleneck matching problem, from an engattial lower
bound to a guarantee linear in the number of requests. Wiilexgponentially worse
than its performance for the objective of minimizing tot&tdnce, it is a natural al-
gorithm that is easy to implement. Two algorithms that penfaotably better than
GREEDY for the min-weight objective (BRMUTATION and BALANCE) also have lin-
ear competitive ratios for the bottleneck objective withaerce augmentation. These
results suggest that in some sense the bottleneck objéstimere difficult than the
total distance objective, as none of the three algorithrealbthe(?(k) barrier for the
bottleneck objective. Determining if the lower bound (undsource augmentation)
is in fact£2(k) remains an open question.

References

C. Chung, K. Pruhs, and P. Uthaisombut. The online tranapont problem: On the exponential boost of
one extra server. |bATIN, pages 228-239, 2008.

J. D. Hartline and T. Roughgarden. Simple versus optimaha@isms. IPACM Conference on Electronic
Commercepages 225-234, 2009.

. Idury and A. Schaffer. A better lower bound for on-linetl®teck matching, manuscript. 1992.

. Kalyanasundaram and K. Pruhs. Online weighted matchihgAlgorithms 14(3):478-488, 1993.

Preliminary version appeared 8ODA pp. 231-240, 1991.

Kalyanasundaram and K. Pruhs. Speed is as powerful as/agtance. J. ACM 47:617-

643, July 2000a. ISSN 0004-5411. doi: http://doi.acmiDdi145/347476.347479. URL

http://doi.acm org/ 10. 1145/ 347476. 347479. Preliminary version appeared HOCS

pp. 214-221, 1995.

. Kalyanasundaram and K. Pruhs. The online transportgtioblem. SIAM J. Discrete Math.13(3):
370-383, 2000b. Preliminary version appeareB8A pp. 484-493, 1995.

. Khuller, S. G. Mitchell, and V. V. Vazirani. On-line algtthms for weighted bipartite matching and
stable marriagestheor. Comput. S¢i127:255-267, May 1994. ISSN 0304-3975. doi: 10.1016/0304
3975(94)90042-6. URhttp://dl .acmorg/citation. cfn®i d=179131. 179134.

C. A. Phillips, C. Stein, E. Torng, and J. Wein. Optimal ticréical scheduling via resource augmentation.

Algorithmicg 32(2):163—-200, 2002. Preliminary version appeare8Ti®C pp. 140-149, 1997.

Roughgarden anfl. Tardos. How bad is selfish routing? ACM 49(2):236-259, 2002. Preliminary

version appeared iIROCS pp. 93-102, 2000.

W WD

o]

(%]

=



