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Abstract. We empirically evaluate the performance of three approxima-
tion algorithms for the online bottleneck matching problem. In this match-
ing problem, k server-vertices lie in a metric space and k request-vertices
that arrive over time each must immediately be permanently assigned to a
server-vertex. The goal is to minimize the maximum distance between any
request and its assigned server. We consider the naı̈ve GREEDY algorithm,
as well as PERMUTATION, and BALANCE, each of which were constructed
to counter certain challenges in the online problem. We analyze the perfor-
mance of each algorithm on a variety of data sets, considering each both
in the original model, where applicable, and in the resource augmentation
setting when an extra server is introduced at each server-vertex. While no
algorithm strictly dominates, GREEDY frequently performs the best, and
thus is recommended due to its simplicity.

1 Preliminaries

Fundamentally, matching problems are often quite simple to state: given two sets,
match each item in the first set to a distinct item in the second set. Yet matching
problems are broadly applicable and sometimes deceptively complex. Approxi-
mation algorithms offer a pragmatic way to achieve an acceptable solution to NP-
complete problems and have been extensively studied and developed in recent
decades. Approximation algorithms are measured by their theoretical guarantee,
quantifying the worst possible performance. Yet, these worst-case scenarios may
not be frequently realized in practice, and thus other metrics may be more appro-
priate in characterizing algorithms. Likewise, one approximation algorithm may
have a worse theoretical guarantee than another, but perform better in typical sit-
uations. Hence, the empirical evaluation of approximation algorithms provides
additional insight into the strengths, weaknesses, and applicability of various al-
gorithms.

We consider several algorithms for the online bottleneck matching problem.
Informally, in the online bottleneck matching problem, a set of servers are known



from the beginning, and a set of requests arrive over time. As the requests arrive,
each must be matched to a server, and the quality of the solution is measured
based on the length of the longest edge in the matching. The performance of the
approximation algorithm is compared to the bottleneck cost, the cost of the longest
edge in the matching, of the optimal offline solution, where all requests and servers
are known in advance.

In Section 1, we formally define the problem, discuss recent work on the prob-
lem, describe the algorithms studied, and consider other empirical evaluations.
Section 2 details the implementation of the algorithms and a strategic brute force
solution. Section 3 describes some of the data sets considered, and the analysis
thereof is provided in Section 4, before concluding in Section 5.

1.1 Online Bottleneck Matching

Formally, in the online bottleneck matching problem, we are given a set of server-
vertices S = {s1, s2, . . . , sk} that lie in a metric space. Over time the requests
arrive at request-vertices R = {r1, r2, . . . , rk}. The online algorithm only learns
the value of the next request-vertex in the sequence after it has assigned the pre-
vious request. Thus, upon the arrival of request vertex ri, the online algorithm
must permanently and irrevocably assign an unused server-vertex sj to service
that request. The cost of the assignment is the distance between these two ver-
tices, and the bottleneck cost (or distance) of the overall assignment is the cost of
the most expensive assignment made. The online algorithm attempts to minimize
the bottleneck cost of the overall assignment.

As is standard with online algorithms, the performance of an algorithm is eval-
uated using competitive analysis. Let OPT denote an assignment which achieves
the optimal offline bottleneck cost. We will also use OPT to refer to said optimal
offline bottleneck cost. An online algorithm is thus deemed α-competitive if the
worst-case ratio of the online bottleneck cost to the bottleneck cost of OPT is at
most α for all possible instances. When looking at a particular instance of a prob-
lem, we consider the ratio of the online bottleneck cost on that instance to the
bottleneck cost of the optimal solution for that instance.

The three algorithms we consider were studied in [2] for the online bottle-
neck matching problem, and were previously introduced in the context of total-
weight matching [9, 11, 10], where the goal is to find the matching with least
total cost, rather than least bottleneck cost. Observe that said problem with the
min-weight objective is equivalent to minimizing the average distance between
request-vertices and server-vertices. The performance of GREEDY was shown to
be exponential in [2], which also confirmed the prior observation of [9] that PER-
MUTATION was linear. Using an instance where all the servers and requests lie
on a single line, Idury and Schäffer [8] proved that no algorithm can achieve a
competitive ratio better than approximately 1.5k.



This ‘negative’ lower bound result motivated the study in [2] using a weak-
adversary model, namely resource augmentation. In this setting, they consider
how well the online algorithm does when it has two servers available per server-
vertex, while leaving the optimal offline solution unchanged. This type of bicri-
teria result has also been used in the min-weight matching problem, with [10]
showing that GREEDY does substantially better with resource augmentation for
the total-weight objective. Yet GREEDY still had its limitations, leading [10] to
propose the algorithm BALANCE, a modification of GREEDY which uses a penalty
cost to decide when to use the second server at a given server-vertex.

Following the notation of [10, 2] we use the term halfOPT-competitive ratio
when referring to the competitive ratio of an online algorithm with server-vertices
that have two servers when compared with an optimal offline solution with each
server-vertex having a single server. In [2] it was shown that for the bottleneck
objective all three algorithms have a halfOPT-competitive ratio of at least Ω(k),
and that GREEDY and BALANCE have upper bounds of k in that setting, while
PERMUTATION has an upper bound of k−1. Given the comparable performance of
the three algorithms, they support the use of GREEDY for the bottleneck objective
with resource augmentation since it is the simplest of the three algorithms.

The online bottleneck matching problem has also been studied in the context
of a Serve-or-Skip bicriteria analysis model, where the online algorithm may reject
or skip up to a specified number of requests [3]. That model is not studied in this
work, but remains an interesting direction for future work.

1.2 Three Approximation Algorithms

We briefly describe the three approximation algorithms for completeness. Note
that in the resource augmentation model, we may denote the original (primary)
server with a superscript of 1, and the additional (secondary) server with a super-
script of 2. While this is for notational convenience, without loss of generality all
algorithms will choose the smallest available superscript for a given server.

GREEDY behaves in the natural way, by greedily selecting the closest avail-
able server each time a request is revealed, with ties broken arbitrarily. BALANCE,
proposed in [10], again follows the greedy paradigm, but only applies in the re-
source augmentation setting. Informally, the algorithm pays a multiplicative dis-
tance penalty to assign a request to the second server at a server location. More
precisely, BALANCE determines pseudo-distances from a request ri, where the
pseudo-distance from ri to s1j is d(ri, sj), the actual distance in the metric, while
the pseudo-distance from ri to s2j , the secondary server at the same location, is
c · d(ri, sj) for a constant c. BALANCE then assigns requests to servers greed-
ily using the pseudo-distances, though the cost paid remains the actual distance
in the metric. (Thus, note that if c = 1, BALANCE is in fact GREEDY in the re-
source augmentation model.) In [10], the constant for BALANCE was specified as
c > 5 + 4

√
2.



The final algorithm we consider, PERMUTATION, is given in [9], with simi-
larities to an algorithm studied by [11]. In essence, when each request arrives, the
algorithm computes the optimal offline solution based on the requests thus far, and
assigns the new request to the server used in this optimal offline solution which is
not used in the current online solution. Formalizing this idea, as in [9], if Ri ⊂ R
are the first i requests, a partial matching of Ri is a perfect matching of Ri with a
subset of the servers of S. Define Mi to be the edges that form a minimal weight
partial matching on Ri which minimizes |Mi −Mi−1|. Let Si ⊂ S be the servers
used in Mi. PERMUTATION constructs its assignment for i + 1 requests by com-
puting Mi+1, maintaining the existing assignments from the first i requests, and
assigning request ri+1 to the unique server s ∈ Si+1 − Si. Recall that the offline
solution only has one server per server-vertex, even in the resource augmentation
setting.

1.3 Empirical Evaluation of Approximation Algorithms

While much effort has been put into developing approximation algorithms for NP-
complete problems, the theoretical guarantee is, of course, a measure of the worst
possible performance. In many cases, worst-case analysis is performed rather
than average-case analysis, in part because determining an appropriate set of in-
puts to consider for average-case analysis is challenging. Yet, for many practical
problems, there is interest in typical behavior. Thus, there is a growing body of
work which empirically evaluates the performance of various approximation al-
gorithms, not only for network-based problems that are most similar to what we
consider here, but also in domains such as probabilistic encoding [13]. Even for
problems with constant approximation guarantees, like the well-studied k-center
problem with well-known 2-approximation algorithms, [7] shows that increasing
or decreasing the value of k by 1 can in fact result in the actual performance of
the approximation algorithm moving from near one extreme to the other. In [12,
6] algorithms and heuristics are both evaluated for the single-source unsplittable
flow problem. They seek to find not only how close to the fractional optimum
the calculated solutions are, but also how the solutions compare on running time,
concluding that the actual behavior is often much better than the theoretical guar-
antee.

Finally, we are certainly not the first to conclude that greedy approximation
algorithms do well. We note several papers that also use a variant of the expres-
sion “greedy is good” in their titles, including [14, 1, 15] considering the sparse
approximation problem over redundant dictionaries, server placement in sensor
networks, and multi-constrained quality-of-service routing, respectively.



2 Implementation Decisions

Each of the algorithms was implemented in C++. While the code was designed
to be reasonably efficient, the implementations were not optimized for speed, an
issue previously addressed in [6], as the focus of this work is comparing the per-
formance guarantee of the objective function. Instances with k in the hundreds can
easily run in minutes on a standard laptop for all of the approximation algorithms,
in both the original and resource augmentation models. However, the brute force
algorithms for OPT and halfOPT are, not surprisingly, much slower, with an in-
stance for halfOPT with k = 13 needing five hours, and larger instances requiring
days. Again, while some improvements in this area are possible, it is not the focus
of this work.

Two tie-breaking conditions are implemented without loss of generality. By
default when in the resource augmentation model, all implementations choose the
server labeled s1i before choosing s2i . A small ε > 0 is added to the distance to
each s2i at runtime in order to enforce the decision that s1i should be chosen first
as the lower-cost server. In the case of all other ties, the server with the smallest
label is chosen; thus if servers si and sj are equidistant, and i < j, si is chosen.

2.1 The Data Files

Assignment decisions are based upon the distance between a given server and a
given request. Thus for each data set there is a file containing a two-dimensional
distance matrix which allows for efficient access to these distance values. For-
mally, the ijth entry in the distance matrix is the distance from request ri to server
sj . Naturally, there are additional data files for each considered permutation. Note
that the input file does not need to be modified when resource augmentation is
used. As described above, a tie-breaking ε is used in the implementation itself,
and in cases where pseudo-distances are used, the algorithm makes those calcula-
tions at runtime rather than modifying the data file. Additionally, the algorithms
are implemented to consider only one row, or one request, of the distance matrix
at a time. This preserves the online nature of the problem.

2.2 Greedy Algorithms

The implementation of GREEDY, the natural greedy strategy, was straightforward.
Costs are read into a vector one request at a time. Each request is then greedily
assigned to the closest available server using a boolean value to determine if a
server is available. In the resource augmentation condition, the number of consid-
ered servers is doubled and the perturbation of ε is added to the cost of each s2i at
runtime. Requests are then greedily assigned, in both the original model and the
resource augmentation setting.



Since the BALANCE algorithm is in fact a greedy algorithm with specialized
distances, the implementation of BALANCE was quite similar to that of GREEDY
with resource augmentation, the only setting in which BALANCE is defined. While
resource augmentation is a theoretically powerful idea, in practice its implemen-
tation is straightforward because the algorithm simply needs to double the avail-
able number of servers. With the tie-breaking conventions previously described, it
greedily assigns the current request to the closest available server, where closest
is defined appropriately for the algorithm.

As noted, in BALANCE, the algorithm considers a pseudo-distance when choos-
ing to assign a request to a secondary server (a multiplicative factor of c) but
that penalty is not considered when calculating the bottleneck cost. While the
c > 5 + 4

√
2 specified in [10] arises in the theoretical proof of its performance

guarantee, the algorithm does not require any specific value of c, recalling that
c = 1 is precisely GREEDY. We thus choose values of c both based on that theo-
retical value, and based on the distances in our data set. Intuitively, if a secondary
server is chosen only when it is worthwhile to pay an extra factor of c, the perfor-
mance of the algorithm can depend greatly on the choice of c. BALANCE is likely
to perform well with what might be called judicious use of secondary servers, that
is, using them when there are noticeable benefits, but not at the risk of having
them unavailable later when the benefit would be even greater. For that reason, we
often implement BALANCE with multiple c values.

2.3 PERMUTATION

PERMUTATION is defined for both the original model and resource augmentation,
with many similarities between the two implementations. While the behavior of
PERMUTATION is fairly straightforward to describe at a high level, its implemen-
tation is more involved because of the need to solve a partial matching as a sub-
routine. For partial matching, we employed the LEMON (Library for Efficient
Modeling and Optimization in Networks) C++ template library [5], specifically
the Max-Weight Matching algorithm and the directed graph data structure. (Since
our problem is in terms of minimum costs, we were required to translate our val-
ues to a max-weight scenario by subtracting each value from a sufficiently large
constant.)

Once the appropriate conversions have been made, the LEMON graph is ini-
tially constructed with each server represented by a node. A set is also created to
hold the servers that have been assigned to a request. In each iteration, a new node
ri is constructed for the incoming request and edges with appropriate weights are
created based on the distance values in the max-weight distance matrix. The max-
weight matching algorithm is then run, which finds an optimal matching given
the servers and subset of requests that have arrived so far. The servers in the new
matching are compared to a set of servers that have been used in previous itera-
tions. The server in the current matching that is not a member of the set is then



assigned to service request ri and is added to the set of matched servers. In the
LEMON graph structure, nodes are indexed from 0 as they are added. In the re-
source augmentation condition, the initial servers are indexed 0, . . . , k − 1, and
the additional servers at each location are k, . . . , 2k − 1, ensuring the indexes of
s1i and s2i are an additive k apart. When the arcs to additional servers are added,
the aforementioned ε must be subtracted from the weight to enforce that in the
max-weight scenario the initial server will be chosen first.

2.4 OPT

To compute the optimal solution (on small instances, since naturally the prob-
lem quickly becomes intractable) to the offline bottleneck matching problem, it
must be calculated by brute force. The natural approach is to fix an ordering of the
servers, and try all possible k! permutations of the k requests, determine the bottle-
neck cost of each such matching, and take the smallest. We improve slightly upon
that naı̈ve strategy by observing that since we seek the minimum bottleneck cost,
we can stop computing the cost of any matching where the current bottleneck edge
is more expensive than that of the best matching found thus far. Likewise, if we
have already run one of our approximation algorithms on a given instance, since
the optimal solution must be at least as good, we can provide the bottleneck cost
of the approximation algorithm as the starting minimum bottleneck cost. While
these measures provide some time savings, they do not fundamentally change the
factorial runtime generally necessary for computing an optimal solution.

In the special case where all the servers and requests lie on the line, the opti-
mal solution is in fact easy to compute offline. It can readily be observed that if
the requests and servers are each sorted from left to right on the line, the leftmost
request is assigned to the leftmost server, and so forth. Thus, the runtime is dom-
inated by the k log k time required to sort each of the sets. Note, however, that
such an assignment does not extend to the resource augmentation model; requests
will now be assigned left to right to a subset of size k, giving an exponential run-
time. Observe that in this special case, the original data file with locations of the
servers and requests is more useful than the two-dimensional distance matrix used
elsewhere.

3 Data Sets Analyzed

In empirical evaluation, the choice of data sets analyzed naturally impacts the re-
sults. It is of course natural to consider the instances which provided the matching
bounds for the theoretical performance guarantees of some of the algorithms, in-
cluding those studied in [2]. Note that while all of the data sets in [2] involve
metrics, not all of them are Euclidean, validating the decision to have data input
files maintain the distance between every request and server. Random data sets are



of course useful, especially because they can avoid some of the potential biases
of constructed data sets. For random data sets, we fixed a number k, and indepen-
dently and randomly generated k server locations and k request locations in a 100
by 100 region of the Euclidean plane. Observe that since distances and locations
are recorded as real numbers, the precise location in the plane is not important,
and the size is also without loss of generality due to scaling.

The line, though simple to visualize, proves worth of study in this problem.
Though the optimal offline solution is straightforward, in the online scenario it
is much more challenging, as evidenced by it forming the basis of the general
lower bound for any algorithm for the online bottleneck matching problem [8].
Only recently was the first o(n) algorithm for online matching on a line (with the
total-weight objective, not the bottleneck objective) given [4]. Thus, we looked at
randomly constructed instances on the line. For each data set, we randomly gen-
erated k server locations along the line, and then randomly generated k request
locations along the line, and then picked some of the k! permutations of the pos-
sible arrivals of the requests. (Note that it is unnecessary to permute the ordering
of the server vertices, as all of them are known prior to the first request arriving.)

As one example of a real-world data set, we consider the problem of sending
ambassadors from CS clubs at each of the fifty largest colleges and universities
in the United States to the fifty largest population centers in the United States to
provide CS outreach to school districts. The requests are thus the fifty largest col-
leges and servers are the fifty largest population centers in the United States and
the objective is a matching which minimizes the farthest any college’s CS club
must travel.1 While these sets and rankings may change over time or be disputed,
the actual choices of values are provided for illustration purposes, and could easily
be adjusted. Ordering the requests by college size order (increasing or decreasing)
are only two of many possible request arrival orders of interest. There are also
multiple potential measures of distance. For simplicity, we chose to use the dis-
tance as the crow flies, though mapping software could be used to compute driving
times, or airline routes could be used to determine expected travel time. Thus, our
distances are measured in terms of distances between coordinates in Euclidean
space when the cities and colleges were plotted; they are not in miles, but could
be scaled accordingly.

4 Results and Discussion

We cannot definitively conclude that one of the algorithms is always best, but our
empirical evaluation does confirm that the theoretical guarantees and their relative
values are not generally indicative on the algorithms’ performance on particular

1 The population centers were obtained from http://www.infoplease.com/ipa/a0763098.html,
and the colleges from http://www.matchcollege.com/top-colleges, excluding online
colleges, both as of April 2015.



instances. Thus, while GREEDY has the worst theoretical guarantee of the studied
algorithms, it frequently has the best performance, and has the added advantage
of being straightforward to explain and implement. Additionally, while the algo-
rithms may do far better than their theoretical guarantee suggests, in the random
settings and those derived from real-world data, we also find that for sufficiently
large instances, the approximation algorithms never achieve the optimal value, in
either the standard model or resource augmentation. Yet limited conclusions can
be drawn, even about the performance of algorithms on particular types of scenar-
ios, since on the same exact sets of servers and requests, with a different ordering
of the request arrivals, GREEDY can sometimes be better than PERMUTATION,
and sometimes worse, in meaningful ways.

Because BALANCE is a greedy algorithm, it is natural to try to make direct
comparisons between it and GREEDY. By construction, BALANCE in the resource
augmentation setting, the only setting where it is defined, must do at least as well
as GREEDY on the same instance in the standard model. However, there is no
corresponding claim about BALANCE as compared to GREEDY in the resource
augmentation setting. As noted in the following portions, BALANCE can actu-
ally do notably worse than GREEDY in the resource augmentation setting since in
some situations the penalty factor c can cause it to not pick a server that would
otherwise be a good choice. This is more pronounced when c is large compared
to the maximum distance from a server to a request. Thus, if BALANCE is cho-
sen as the approximation algorithm, a user should carefully consider the choice of
c, likely test multiple c values, and note that a slight change in that penalty can
significantly change the resulting bottleneck cost.

As mentioned, it can sometimes be feasible to compute OPT but halfOPT is
computationally intractable. Naturally, the bottleneck cost in the standard model
is always an upper bound on the bottleneck cost in the resource augmentation
model. In some cases, they can in fact be identical – consider a scenario where
the servers are at {2, 4, 6, . . . , 2k} on the line and the requests arrive in order
at {1, 3, 5, . . . , 2k − 1}, where the optimal bottleneck cost is 1 in either model;
tie-breaking rules or minor distance perturbations can easily be employed so that
GREEDY and the other approximation algorithms will obtain the optimal solu-
tions. However, the bottleneck costs in the two models are frequently quite dif-
ferent, with halfOPT often significantly smaller than OPT, which is again not sur-
prising, and a frequent motivation for resource augmentation models, since the
additional resources can sometimes dramatically improve the solution. In the re-
mainder of this section we provide specific instances from the data sets previously
described.

4.1 Examples Illustrating Theoretical Bounds

The instances of the examples given in [2] that provide the basis for the theoretical
bounds on the algorithms primarily served as one of many checks of the validity



of our implementations. As expected, the empirical performance matched the the-
oretical bounds for the specified algorithms, and since the instances were typically
developed to highlight a limitation of a particular algorithm, often did markedly
better for the other algorithms. For example, for all values of k tested, the instance
described in Theorem 1 of [2], where requests and all but one server are placed
at one less than successive powers of 2 showed that GREEDY does exponentially
poorly on this instance, while PERMUTATION is an O(1)-approximation. Thus, as
the previous work indicated, these theoretical performance guarantees are in fact
realizable with particular instances. However, as the rest of our instances show,
the approximation algorithms often perform markedly better than their theoretical
guarantees, which should thus not be assumed to represent the expected or typical
performance.

4.2 Random, Constrained to a Line

We next consider the instances where k requests and k servers are randomly cho-
sen from an interval on a line. Recall that as detailed in Section 2.4, the optimal
solution can be efficiently computed for large values of k in the standard model,
but not in the resource augmentation model. Thus, for the standard model, Table 1
provides details on both approximation algorithms as well as the optimal solution,
but for the resource augmentation model reports only on the approximation algo-
rithms. It provides results for two values of c for BALANCE, both the c ≈ 10.66
that is used in the theoretical guarantee, and a much better penalty factor of c = 2
given the points all lie within an interval of size 100. The data were generated as
described in Section 3, and the table reports on an arbitrary permutation of the
requests for each of the generated datasets.

Table 1. The bottleneck cost for seven instances, each with k randomly generated servers
and k randomly generated requests which all lie on a line of length 100, under the different
approximation algorithms for both the standard model and resource augmentation, as well
as the bottleneck cost of the optimal solution in the standard model.

k = 50 k = 75 k = 100 k = 125 k = 150 k = 175 k = 200
Standard GREEDY 70.3113 59.0686 85.1544 85.4344 48.8434 66.4495 57.8651
Model PERMUTATION 70.3113 59.0686 85.1544 85.4344 48.8434 66.4495 57.8651

OPT 12.0686 8.4615 9.41443 14.4142 10.6674 10.1597 5.19417

GREEDY 10.0154 10.9578 2.81056 4.5045 4.23073 4.77434 2.23169
PERMUTATION 12.867 10.958 5.0171 3.9151 5.653 4.7741 2.2321

Resource BALANCE
23.6172 17.8645 9.25468 13.9027 7.20631 10.3744 6.91647

Augmen- c ≈ 10.66
tation BALANCE

8.98231 11.0298 3.80985 3.83119 2.89899 6.07102 2.8076
c = 2



Fig. 1. Performance of the three approximation algorithms, with two c values for BAL-
ANCE, in the resource augmentation model for seven instances, each with k randomly gen-
erated servers and k randomly generated requests which all lie on a line of length 100.

Observe that on all instances, GREEDY and PERMUTATION performed identi-
cally in the standard model, yet were noticeably different from OPT. Because the
interval in which the points lie is bounded, this size (100) naturally provides an
upper bound on the performance of any of the algorithms which is far more re-
strictive than the theoretical bound for either algorithm (exponential for GREEDY,
linear for PERMUTATION [2]). Thus, in that regard, the performance of the ap-
proximation algorithms in the standard model can be considered quite poor, since
all but one has a bottleneck cost that is at least half of the total distance of the
region. Since the density of points within the region increases as k increases, it
is unsurprising that the smallest OPT occurs with the largest k, yet it is also logi-
cal that the online algorithms may in fact encounter certain challenges with more
dense points, and do not necessarily trend comparable to OPT. Hence, these in-
stances reinforce the notion that the line, simple as it may be, remains a challenge
for the bottleneck matching problem. Moreover, they highlight that while two ap-



proximation algorithms may have markedly different theoretical guarantees, they
can perform identically on multiple instances, while being far from optimal.

Unlike in the standard model, GREEDY and PERMUTATION never have the
same bottleneck cost in these instances in the resource augmentation model. In
fact, as illustrated in Figure 1 which plots the resource augmentation data from
Table 1, while GREEDY has a smaller bottleneck cost than PERMUTATION much
of the time, in one instance PERMUTATION outperforms GREEDY, and in some
the difference in costs is quite small. Again, computing halfOPT is prohibitively
expensive. All three approximation algorithms have theoretical guarantees that are
linear in k as shown in [2], though their performance is also again bounded by the
size of the line segment, 100, yet neither of those facts would be observable from
this data alone. While none of the algorithms give bottleneck costs that are strictly
decreasing as k increases, that is the overall trend for all of them, which is again
not surprising as the points become more dense within the region. With resource
augmentation, we are much more likely to see this trend as all algorithms have
some means of recourse if a ‘poor’ decision was made.

4.3 Random, 2-Dimensional Euclidean Metric
We report on the performance of the algorithms in both the standard model and
resource augmentation for randomly generated servers and requests in a two-
dimensional 100 × 100 region where distances obey the Euclidean metric, for
two values of k, namely k = 13 and k = 200. In each case, we consider five
arrival orders of the requests, chosen arbitrarily. For k = 13 we plot competitive
ratios representing the ratio of the cost of the algorithm’s solution to the cost of the
optimal solution on that given instance in Figure 2, and precise numerical values
of the calculated and optimal bottleneck costs are reported in Table 2.

Table 2. Performance of the different algorithms on k = 13 random requests and servers
in two dimensions, with five different arrival orders of the requests.

Order 1 Order 2 Order 3 Order 4 Order 5

Standard Model
GREEDY 94.9626 78.6556 79.71 72.1809 61.7316
PERMUTATION 105.798 99.297 90.787 99.075 76.635
OPT 48.0173

Resource Augmentation

GREEDY 57.8078 57.8078 45.6416 45.6416 45.6416
PERMUTATION 99.075 99.075 45.6421 59.1161 99.075
BALANCE c ≈ 10.66 94.9626 78.6556 79.71 45.6416 61.7316
BALANCE c = 2 72.1809 61.7316 57.8078 57.8078 61.7316
halfOPT 45.6416

Not surprisingly, resource augmentation appears to be less useful for randomly
selected points in two dimensions than in one dimension, as evidenced by the



Fig. 2. Ratio of the bottleneck cost of the approximation algorithm to the optimal solution
for each of the request arrival orderings on k = 13 randomly generated requests and servers
in a 100× 100 region with Euclidean distances.

values for OPT and halfOPT. Yet the way that the approximation algorithms make
their choices show that the availability of a second server to perhaps rectify poor
prior choices can be quite advantageous for the tested algorithms. Observe that
GREEDY was the best overall performer in both models, though in one instance
BALANCE also obtained the optimal solution, notably with c ≈ 10.66 but not
with c = 2 for that same instance. Yet in the other four instances, BALANCE with
c = 2 was at least as good as BALANCE with≈ 10.66, sometimes significantly so.
Again, the ordering of the requests makes a substantial difference; PERMUTATION
is one of the worst performers in terms of the competitive ratio in both models, yet
it does near-optimally for the third ordering in the resource augmentation setting.
As before, the bounded size of the region ensures that all algorithms perform
markedly better than the theoretical guarantee.

In additional instances with k between 10 and 15 whose results are not ex-
plicitly provided here, GREEDY was again better than or at least as good as PER-
MUTATION 90 percent of the time in the standard model, and was the best of the



tested algorithms more than two-thirds of the time in the resource augmentation
model. Likewise, in instances with larger k, GREEDY was again best the majority
of the time in both models. Due to the limitations of computing optimal solutions
for large k (in both the original model and resource augmentation), we cannot
compute OPT or halfOPT for k = 200, but plot the bottleneck costs obtained by
the approximation algorithms in Figure 3. Note that while the bottleneck costs for
GREEDY seem to have typically been cut in half by resource augmentation, we
cannot assume that same relationship between OPT and halfOPT. Again GREEDY
outperforms PERMUTATION, this time for all five orderings in both models. For
these instances, a smaller constant c for BALANCE also appears to be advanta-
geous, likely because the higher density of points with a comparatively large k
allows for BALANCE to take more advantage of secondary servers, particularly
with a lower threshold for using them.

Fig. 3. Bottleneck costs obtained by the approximation algorithms for each of the request
arrival orderings on k = 200 randomly generated requests and servers in a 100 × 100
region with Euclidean distances.



4.4 Colleges and Population Centers

Finally, we consider the matching of colleges to population centers with k = 50.
Note that it was in fact possible to compute OPT and halfOPT in a matter of
minutes, even though for similar size data sets with random data in two dimen-
sions the computations were prohibitively expensive. This difference is likely due
to the structure that is inherent in this real set, as well as the time-saving mea-
sures described for implementing the brute force solution which discard potential
matchings that are more expensive than the best previously discovered.

Table 3. Performance of the various algorithms (and the optimal solution) in the original
model and with resource augmentation on a colleges and population centers data set (k =
50), when the requests (colleges) arrive in order of increasing size, decreasing size, and
alphabetically.

Increasing Size Decreasing Size Alphabetical
Standard GREEDY 36.8705 39.2734 36.6194
Model PERMUTATION 37.8700 39.2734 36.183

OPT 30.0832

GREEDY 12.2332 11.3464 11.447
Resource PERMUTATION 13.2331 11.9905 13.4081
Augmentation BALANCE, c ≈ 10.66 36.4335 38.1106 34.6606

BALANCE, c = 2 18.8048 15.1327 16.9319
halfOPT 9.8005

Some numerical results are highlighted in Table 3. While none of the algo-
rithms achieve the optimal solution in either the original model or under resource
augmentation, GREEDY typically (but not always) provides the best results for
both settings. We do not claim, however, that this will always be the case for any
data set; in fact it is possible that some ordering of these exact colleges and popu-
lation centers could have another algorithm outperform GREEDY for resource aug-
mentation, just as PERMUTATION is slightly better than GREEDY when the col-
leges are ordered alphabetically in the standard model. Observe that GREEDY and
PERMUTATION have similar or identical bottleneck costs in the standard model,
and that these values are substantially closer to OPT than they were on the line.
Again, the bounded region ensures a maximum bottleneck cost, which in this case
is 42.9691. Thus, while the ratio of the performance of the approximation algo-
rithms to the optimal solution in the standard model is fairly low, it is in fact not
necessarily that far from the bottleneck cost of the worst possible matching.

Observe that in the standard model with three plausible orderings of inter-
est in the real world, GREEDY outperforms PERMUTATION for one ordering, ties
it for another, and underperforms it in a third, though the difference is smaller



when GREEDY underperforms than outperforms. Yet in the resource augmenta-
tion model, GREEDY outperforms all of the tested algorithms on the three order-
ings. Again, due to the nature of the bounded region and its size, BALANCE does
much better with c = 2 than with c ≈ 10.66, and GREEDY, which is BALANCE
with c = 1 does the best. While the alphabetical ordering produced the worst re-
sults for the standard model, it was the ordering in which the algorithms generally
performed the best for resource augmentation.

5 Conclusions

Approximation algorithms are increasingly important for solving intractable prob-
lems, yet an algorithm is evaluated based on competitive analysis of the worst-case
online performance of an instance compared to the optimal offline solution. We
continue the trend of some recent work in showing that empirical evaluation of
approximation algorithms adds a valuable dimension to their study. Moreover, we
show that the relative upper bounds on the theoretical performance of approxima-
tion algorithms are not necessarily good indicators of the algorithms’ performance
on typical instances. In particular, in the online bottleneck matching problem, we
show that the ‘obvious’ greedy algorithm is frequently the best of the studied ap-
proximation algorithms for that problem in the standard model, despite having a
significantly worse theoretical guarantee. Likewise, though the algorithms consid-
ered all have a linear guarantee in the resource augmentation model, their actual
performance can vary greatly, with GREEDY again often the best, sometimes ob-
taining the optimal solution.

Furthermore, knowledge about the structure of the data set can guide the
choice of algorithm. We observe different performance for two-dimensional ran-
dom data than one-dimensional, and if the data lies in a known bounded region,
that can be useful in determining the choice of constant c used in BALANCE.
GREEDY is the easiest to implement, and frequently the best, leading to its rec-
ommendation as the default algorithm if only one can be implemented. Yet, all of
the approximation algorithms ran in minutes, and thus there are scenarios where
calculating the results of multiple approximation algorithms is appropriate.

Future work includes evaluating approximation algorithms on different mod-
els for this problem, including the Serve-or-Skip model introduced in [3] and ex-
haustively testing all k! orderings for some instances to better quantify the per-
centage of time that GREEDY is best.
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