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Abstract

A primitive hypergraph is a hypergraph with maximum cardinal-
ity three and maximum degree three such that every 3-edge is adja-
cent only to 2-edges and is incident only to vertices of degree two. De-
ciding the bicolorability of a primitive hypergraph is NP-complete (a
straightforward consequence of results in [14]). We provide sufficient
conditions, similar to the Sterboul conditions proved by Défossez [5],
for the existence of a bicoloring of a primitive hypergraph, and we
provide a polynomial algorithm for bicoloring a primitive hypergraph
if those conditions hold. We then draw a connection between this al-
gorithm and the well-known necessary and sufficient conditions given
by Berge [1] for maximal matchings in graphs, which leads to a char-
acterization of bicolorability of primitive hypergraphs.

1 Preliminaries

Let H = (V,E) be a hypergraph where V is the set of vertices and E
is the non-empty set of distinct subsets of V referred to as the edges of
H. For a general hypergraph reference see [2]. A k-edge is an edge of
cardinality k, noting that if all edges are 2-edges the hypergraph is in fact
just a graph. A bicoloring or 2-coloring of a hypergraph is a partitioning
of the set of vertices V into two color classes, say red and blue, such that
no edge in E is monochromatic. A hypergraph is deemed bicolorable if it
admits such a bicoloring or assignment of the two colors to the vertices.
Much work on the bicolorability of hypergraphs has been done over the
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years [10, 11, 15]; Erdös [7] notes that Miller [17] used the term property B
when he first investigated bicolorability of hypergraphs with infinite edges.
Given the broad interest in and applicability of this problem, bounds and
algorithmic results have both been extensively studied; see [18] and the
references therein. Recently, Défossez [5] proved a conjecture of Sterboul [6]
stating a hypergraph is bicolorable as long as it does not contain a particular
type of odd cycle, improving earlier work on this problem [3, 8].

We consider the bicolorability of a particular type of hypergraph with ad-
ditional restrictions, namely:

(i) each edge is a 2-edge or a 3-edge,
(ii) each vertex has degree at most three, and
(iii) each 3-edge is incident only to vertices of degree at most two, and
(iv) no two 3-edges are adjacent.

We call such a hypergraph a primitive hypergraph. Note that the dual of a
primitive hypergraph H is itself a primitive hypergraph.

While these requirements may seem quite limiting, our motivation for
studying this rather restrictive class of hypergraphs is to better understand
the obstructions to finding a polynomial algorithm for general hypergraph
bicoloring. A common approach, when faced with a difficult problem to
solve, is to study a simpler version of the same problem. If the simpler
problem can be solved, ask if that solution can be extended to the more
complicated problem, and if not, why not. On the other hand, if the simpler
problem is still difficult to solve, then perhaps there is an even simpler
version to investigate, and so on. For the hypergraph bicoloring problem, if
all edges are restricted to be 2-edges, then the hypergraph becomes a graph,
in which case it is well-known how to decide bicolorability in polynomial
time. Thus we consider primitive hypergraphs as a means of simplifying
the structure to make it as ‘graph-like’ as possible, while still retaining the
NP-completeness of its bicolorability. In recent results in this direction,
[14] showed restrictions (i) and (ii) above define a class of hypergraphs for
which bicoloring remains NP-complete, while [13] showed that a further
strengthening of condition (ii) to “(ii′) each vertex has degree at most two”
results in a class of hypergraphs for which bicoloring is in P.

2 Bicoloring Primitive Hypergraphs is
NP-Complete

Recall that in a Boolean expression, a literal is a variable or a negation
of a variable, a clause is a disjunction of literals, and it is in conjunctive
normal form if it is a conjunction of clauses. Satisfiability (SAT), perhaps
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the canonical NP-Complete problem [4], asks if it is possible to assign true
and false values to the variables in the expression so that it evaluates to
true. Numerous variants of SAT have been studied over the years (see, for
instance, examples in [9]).

We consider a variant of SAT that is equivalent to the bicolorability
of primitive hypergraphs, by taking each variable to be a vertex and each
clause to be a hyperedge. Reviewing the notation of [14], a (≤ 3,≤ 3)-All+
NAE-SAT has the following properties:

(i) each clause contains either two or three variables, and
(ii) each variable appears in at most three clauses.

In defining a Primitive (≤ 3,≤ 3)-All+ NAE-SAT instance we add two
further restrictions:

(iii) each variable that is in a clause with three disjuncts is in at most
one other clause, and

(iv) each variable that is in a clause with three disjuncts is in no other
clause with three disjuncts.

Kratochv́ıl and Tuza show the following result, which we then use to
show that Primitive (≤ 3,≤ 3)-All+ NAE-SAT is NP-complete.

Theorem 1 ([14], Theorem 2.1) The problem (≤ 3,≤ 3)-All+NAE-SAT
is NP-complete.

Theorem 2 The problem Primitive (≤ 3,≤ 3)-All+NAE-SAT is NP-com-
plete.

Proof The proof is by reduction from (≤ 3,≤ 3)-All+ NAE-SAT. Recall
that the (≤ 3,≤ 3) condition guarantees that each variable appears in at
most three clauses. For every variable a that appears in two clauses (a, b, c)
and (a, d, e) of size three (and no other clauses), replace a and the two
clauses by three fresh variables a′, a1, and a2 and four new clauses (a1, b, c),
(a2, d, e), (a2, a

′), (a1, a
′). The variable a′ is the effective complement of

both a1 and a2, making those two variables logical aliases of the replaced
variable a. Similarly, for every variable a that appears in three clauses
(a, b, c) and (a, d, e), (a, f, g) of size three, replace a and the three clauses
by four fresh variables a′, a1, a2, and a3, and six new clauses (a1, b, c),
(a2, d, e), (a3, f, g), (a1, a

′), (a2, a
′), and (a3, a

′). As before, a′ is the effec-
tive complement of each of a1, a2, and a3. Finally, for every vertex a that
is in two clauses (a, b, c) and (a, d, e) of size three and another clause (a, f)
of size two, the replacements are almost identical to those in the previous
case. It is easy to see that the new expression is NAE satisfiable if and only
if the original expression is NAE satisfiable. �
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Corollary 2.1 Bicoloring a primitive hypergraph is NP-complete.

3 Sufficient Conditions

In this section, we focus on sufficient conditions for a primitive graph to be
bicolorable. We first provide some definitions and a result of Defossez [5].
We then modify that algorithmic result to provide an alternative set of
sufficient conditions.

There are numerous representations of hypergraphs used in the litera-
ture; a hyperedge may be drawn as a Venn diagram region that includes
all of the incident nodes [12], or as an edge that touches all of the incident
nodes [16]. We choose to use a modification of the latter; since all our hy-
peredges are 2-edges and 3-edges, we depict a 2-edge as a standard graph
representation (two vertices joined by a line) and a 3-edge as the following
structure:

Figure 1: A representation of a 3-edge.

We begin with some definitions, at first closely following the develop-
ment in [5], which will allow us to provide sufficient conditions for a simple
primitive hypergraph to be bicolorable.. A coloring C of a hypergraph H
is a subset of V (H) for which each edge e of H has at least one vertex not
in C, thus partitioning the vertices into two subsets (colors): those in C,
and those not in C. A coloring C of a hypergraph H covers an edge e of H
if and only if at least one vertex of e is in C. A hypergraph H is bicolorable
if and only if there is a coloring C that covers every edge of H. Note that
this definition is equivalent to the definition in section 1.

A sequence (v1, e1, v2, . . . , en, v1) where the eis are distinct edges, the
vis are distinct vertices, and n ≥ 3, is a cycle if vi ∈ ei−1∩ei for i = 2, . . . , n
and v1 ∈ e1∩en. A cycle is considered odd if it has an odd number of edges.
An odd cycle (v1, e1, v2, . . . , en, v1) such that any two non-consecutive edges
are disjoint and |ei∩ei+1| = 1 for i = 1, 2, . . . , n−1, is called a anti-Sterboul
cycle using the terminology of [5]. A hypergraph that does not contain an
anti-Sterboul cycle is a Sterboul hypergraph. Sterboul’s conjecture, proved
in [5], is as follows:
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Theorem 3 ([5]) If H is a Sterboul hypergraph, then H is bicolorable.

Note that this is only a sufficient condition, and thus the presence of
an anti-Sterboul cycle does not imply that a hypergraph is not bicolorable.
In the case of primitive hypergraphs this sufficient condition can be weak-
ened. Below we define a structure called a theta-flow, and then we show in
Theorem 4 that the absence of theta flows together with the absence of odd
graph cycles (i.e. odd cycles consisting only of 2-edges) guarantees that a
primitive hypergraph is bicolorable.

The theta-flow definition below relies on the concept of a path. A path
Pi from vertex v to vertex w is a sequence of distinct edges e1, e2, . . . , ek
such that v is a vertex of edge e1, w is a vertex of ek, and for any pair
of consecutive edges ei and ei+1 on the path, ei is adjacent to ei+1. Two
paths P1 and P2 are disjoint if every edge of P1 is disjoint from every edge
of P2.

a

v

b

c

Figure 2: An example theta-flow.

A theta-flow is a subhypergraph consisting of a designated 3-edge e =
{a, b, c}, a vertex v /∈ e, and paths Pa, Pb, and Pc, from v to a, b, and c,
respectively, such that:

(i) each intersection of two consecutive edges along a path has size one,
(ii) all pairs of non-consecutive edges along each path are disjoint,
(iii) each pair of paths intersect only at the shared vertex v, and
(iv) all three path lengths have the same parity (all even or all odd).

Figure 2 shows an example theta-flow. Pa is the path from v to a that
does not pass through b or c, and similarly for Pb and Pc. Pa ∪ Pb ∪ e, and
Pb ∪ Pc ∪ e and Pa ∪ Pc ∪ e are all anti-Sterboul cycles, so the absence of
anti-Sterboul cycles implies the absence of theta-flows, but not conversely.
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Removing any edge from Figure 2 provides an example of a hypergraph
that is not a theta-flow.

Theorem 4 If a primitive hypergraph H has no theta-flow and no odd
cycle of 2-edges, then H is bicolorable.

Proof We prove this by induction on the number of edges in H. If H has
no edges the theorem is certainly true. Suppose H has k edges, H contains
no odd cycle of 2-edges and no theta-flow, and the implication is true for
all primitive hypergraphs with k − 1 edges. If H has no 3-edges, then H
is simply a graph and having no odd cycles implies that H is bicolorable.
Otherwise, let e0 be a 3-edge of H, and observe that the removal of e0 from
H cannot create any new cycles or new theta-flows. So by the inductive
assumption, hypergraph H \ {e} can be bicolored, say by coloring C. If C
bicolors e0, we are done. Otherwise, we perform Algorithm 1, a modification
of the Défossez algorithm [5]. The input to this algorithm is the primitive
hypergraph H, the bicoloring C and the designated monochrome 3-edge e0.
In the absence of theta-flows, this algorithm modifies the bipartition C of
vertices of H to include edge e0, and thus constructs a bicoloring of H. To
verify this, it will suffice to prove the following claim.

Claim 5 Given a 3-edge e0 = {v1, v2, v3}, Algorithm 1 will either find a
theta-flow or produce a bicoloring.

Proof If the return condition never occurs, then the proof of correctness in
[5] verifies that Algorithm 1 produces a bicoloring. Otherwise, the only way
for the error condition to occur is that e = e0, and in this case it suffices to
show that P ∪Q∪ e contains a theta-flow. To verify this, note that Q\P is
a path joining a node v of P ∩ Q to one of the vertices, say v2 of e0, that
there is a path P3 in P from v to v3, and that there is a path P1 in P from
v to v1. All three paths have the same parity since the sequence of color
reversals along the flow results in reversing the colors of each of the three
vertices {v1, v2, v3} of e0, which was originally monochromatic. �

This completes the proof of Theorem 4. �

Recall that the absence of anti-Sterboul cycles implies both the absence
of theta-flows and the absence of odd cycles of 2-edges. Therefore the
sufficient condition of Theorem 4 is weaker than the sufficient condition of
Theorem 3 so in the case of primitive hypergraphs, Theorem 4 is a stronger
result than Theorem 3. Also, since the absence of odd cycles of 2-edges can
be easily checked in polynomial time using breadth first search, the absence
of theta-flows is of greater interest algorithmically.
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Algorithm 1 : Modified Défossez algorithm applied to a primitive hyper-
graph

INPUT: A primitive hypergraph H = (V,E) and a bipartition C
such that 3-edge e0 ∈ E is the only monochromatic edge.
OUTPUT: A bicoloration of H or an Error message only if H has
a theta-flow. G(w) represents the predecessor node of w in a directed
tree induced by the color reversals.

let x0 ∈ e0
V0 = {x0}
E0 = φ
G(x0) = e0
switch color(x0)
push(x0, P )
while (P 6= φ)

v = top(P )
if (there exists e ∈ E, |e| ≥ 2, monochromatic such that v ∈ e)

if (e\V0 = φ)
return Error(“P ∪Q ∪ e0 contains a theta-flow”)

else
let w ∈ e\V0
if (w ∈ e0)

Q = P
V0 = V0 ∪ w
E0 = E0 ∪ (vw)
G(w) = e
switch color(w)
push(w,P )

else
pop(P )
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4 Necessary and Sufficient Conditions

The Défossez algorithm, when successful in modifying the coloring to in-
crease coverage, does so by a sequence of alternating color reversals along
the edges of a connected subhypergraph A of H. When the algorithm fails,
it only means that an anti-Sterboul cycle was present (or an odd cycle of 2-
edges or a theta-flow in the primitive hypergraph problem). This does not
preclude the existence of a connected subhypergraph that can be used to
augment the coloring through alternating color reversals. Indeed it is plau-
sible that the Défossez algorithm can be modified to allow backtracking
in the event of encountering one of these structures, and proceed to lo-
cate an augmenting subhypergraph whenever there is one. Of course, this
backtracking search would likely destroy the polynomial performance of the
algorithm, which is not surprising since hypergraph bicolorability is known
to be NP-complete. This leads to the following natural question: is hy-
pergraph bicolorability equivalent to the ability to always augment a given
coloring by alternating color reversals within a connected subhypergraph?
This question can be answered in the affirmative for primitive hypergraphs,
which we now show in Theorem 6 below, building from the following defini-
tions. The statement and proof of this theorem are closely analogous to the
statement and proof of the well-known necessary and sufficient conditions
given by Berge [1] for maximal matchings in graphs.

A vertex v of a subhypergraph A of H is internal to A if and only if it
is incident in H only to edges of A. An augmenting vertex for a coloring C
in a primitive hypergraph H is a vertex v of H\C, for which C ′ = C ∪ {v}
is a coloring that covers more edges than C. An augmenting pair v, w of
vertices for a coloring C in a primitive hypergraph H is a pair of adjacent
vertices, with v /∈ C and w ∈ C for which C ′ = C ∪ {v} \ {w} is a coloring
that covers more edges than C (as defined in section 3).

A subset T of the vertex set of a hypergraph H can be locally reduced
into a coloring C ′ if there is a set S ⊂ T of pairwise non-adjacent vertices
for which T\S = C ′ is a coloring that covers exactly the same edges as T .
An augmenting subhypergraph in a hypergraph H relative to a coloring C is
a connected subhypergraph A of H, for which reversing the color of all the
vertices that are internal to A produces a set T which covers more edges
than C and which can be locally reduced into a coloring C ′.

Theorem 6 A primitive hypergraph H is bicolorable if and only if for ev-
ery coloring C of H that does not cover all the edges of H, there is an
augmenting subhypergraph A of H relative to C.

Proof By contraposition, the reverse implication is trivial. That is, if H is
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not bicolorable, then a maximal (in covering edges) coloring C is a coloring
that does not cover all the edges of H and C cannot be augmented. For
the forward implication, let C be a coloring of H that does not cover all
the edges of H. If there is an augmenting vertex v for C, then the set of
edges incident to v (the star of v) forms an augmenting subhypergraph.
Similarly if there is an augmenting pair v, w for C, then the set of all edges
incident to either v or w (the union of their stars) forms an augmenting
subhypergraph. In either of these two situations, we are done, so in the
remainder of this proof, we will assume that there is no augmenting vertex
and that there is no augmenting pair of vertices for C.

Let C ′′ be a coloring that covers all the edges of H. Let U be the set
of edges incident to at least one vertex in C ⊕C ′′. Let S (for solid) be the
edges of U that are incident to any vertex of C and let D (for dashed) be
those edges of U that are not incident to any vertex of C. Since C does
not cover all edges of H, |D| > 0. Therefore there must be some connected
component A of U that contains a positive number of dashed edges, that
is, |A ∩ D| > 0. Note that any vertex v of A that is in C ⊕ C ′′ must be
internal to A, since every edge incident to v is by definition in U , and hence
also in A.

Verifying the following two claims completes the proof.

Claim 7 Reversing the color (relative to C) of every internal vertex of A
results in a subset T that can be locally reduced into a coloring C ′.

Proof It will suffice to prove that for every edge e of H, e has a vertex
not in T , or there is a local reduction T ′ of T , such that e has a vertex not
in T ′. These individual local reductions (if any) will be performed on T to
produce the coloring C ′. The cases below describe how to handle edges of
various different types.

Case 1 Suppose e is not an edge of A.

Then its vertex colors will not be changed, since none are internal to A.
Hence its vertex colorings will be preserved in T , as will its coverage (or
non-coverage).

Case 2 Suppose e is an edge of A, and all vertices of e are internal to A.

We consider subcases based on whether e is a 2-edge or a 3-edge.

Case 2a (Figure 3) Suppose e is a 2-edge. If both endpoints of e are in
T , then they were both not in C before the changes, and exactly one vertex
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v of e must not be in C ′′. If v has degree one in H, then v is an augmenting
vertex for C, which is a contradiction. Therefore, v must also be incident
to another edge e′ ∈ A. If v is incident only to 2-edges e1 = {v, w1} and
e2 = {v, w2} that are both in A, then both w1 and w2 must be in C ′′\C,
in which case v would serve as an augmenting vertex for C, which is a
contradiction, so we can also assume that v is only incident to one other
edge (besides e) e′ = {v, w, x} and e′ is a 3-edge. Since C ′′ is a bicoloring,
at least one vertex w of e′ must be in C ′′. If w /∈ C, or x /∈ C, then v would
serve as an augmenting vertex for C, which is a contradiction, so we can
also assume that w ∈ C and x ∈ C. Note that if w had degree one, then
v and w would form an augmenting pair for C, which is a contradiction.
It follows that w is incident to an edge e′′ = {w, y}, and that y /∈ C, and
y /∈ C ′′. Therefore e′′ /∈ A, so w is not internal to A, which implies that
w ∈ T . Thus v can be removed from T without uncovering any edges, and
giving e an uncolored vertex. It will be seen in the remaining cases that this
is the only case that requires the local reduction technique. Also observe
that no vertex adjacent to v can create the need for another local reduction
since none of these are in E\(C ′′ ∪ C).

v

-

ee′

w
+

x

-

- e′′

+
y

Figure 3: Case 2a. Points with filled interiors represent ver-
tices in C, while others represent vertices not in C. Points
labeled + represent vertices in C ′′, those labeled − represent
vertices not in C ′′, and unlabeled points may or may not be
in C ′′.

v

-
e e′ w

- +

Figure 4: Case 2b
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Case 2b (Figure 4) Suppose e is a 3-edge. If reversing the color of all
three vertices of e results in all three vertices of e being in T , then they
were all not in C before the changes, and at least one vertex v of e must
not be in C ′′. In this event, v is also in another edge e′ = {v, w} ∈ A, and
w ∈ C ′′ implies that w /∈ C. It follows that v would serve as an augmenting
vertex for C, which is a contradiction. Therefore, we can assume that e has
a vertex not in T . Here no local reduction is required for edge e.

Case 3 Suppose e is an edge of A, and some vertex, say v, of e is not
internal to A.

Again, two subcases are considered.

Case 3a (Figure 5, left) Suppose e = {v, w} is a 2-edge. Then w ∈
C ⊕ C ′′, and so if both v and w are in T , then v ∈ C, but w /∈ C, and so
w ∈ C ′′. However, this would imply that v /∈ C ′′, and therefore v ∈ C⊕C ′′,
which contradicts the assumption that v is not internal to A. Therefore v
and w are not both in T , so no local reduction is needed.

v e w

+-

v

-

e e′

w

-

+
x y

+

+

Figure 5: Cases 3a (left) and 3b (right).

Case 3b (Figure 5, right) Suppose e = {v, w, x} is a 3-edge, v is not
internal, and v, w, and x are all in T . Then v ∈ C, v ∈ C ′′, and either
w ∈ C ⊕ C ′′ or x ∈ C ⊕ C ′′. Assume without loss of generality that
w ∈ C ⊕ C ′′, then w is internal to A, so w /∈ C, and therefore w ∈ C ′′.
From this we conclude that x /∈ C ′′. Therefore x /∈ C, since otherwise x
would be internal, which would imply x /∈ T , contradicting our assumption.
But if x /∈ C and x /∈ C ′′ and x ∈ T , then x must be internal to A, and
hence x is in another edge e′ = {x, y} in A, with y ∈ C ′′ and y /∈ C. In this
event, vertex x is an augmenting vertex for C, which is a contradiction.
Therefore v, w, and x are not all in T . As in cases 2b and 3a, no local
reduction is needed.

The three cases above complete the proof of Claim 7. �

Claim 8 T (and therefore C ′) covers more edges than C.
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Proof If E is an edge of D∩A, then, since C ′′ is a bicoloring, some vertex
v of E is in C ′′\C, and since v is internal to A, v will be in T and E will
be covered by T . If E is an edge of S ∩A, then some vertex v of E is in C.
If v is also in C ′′ then v is not internal to A since v must be contained in
a 2-edge {v, w} where w is in neither C nor C ′′ which implies that {v, w}
is not in A. In this case v will be in T and so E will be covered by T .
Otherwise, if v is not in C ′′ then some other vertex x of E must be in C ′′.
If x is also in C then, as above, x is not internal to A and therefore x will
be in T and E will be covered by T . Otherwise, if x is not in C, then x
is internal to A and therefore x will be in T and E will be covered by T .
Hence T covers all the edges of A whereas C covers only those of A\D and
the claim is proved. �

+

+

+

+

−

−

−

−

−

+

Figure 6: Points with a filled interior represent vertices in
C, while others represent vertices not in C. Points labeled +
represent vertices in C ′′, and those labeled − represent vertices
not in C ′′. Solid edges are in S, dashed edges are in D, dotted
edges are in A\(S ∪D), and dash-dotted edges are not in A.

Figure 6 illustrates this claim. The six lowest vertices are all internal
vertices, so they will be reversed in T , which is shown in Figure 7. Then,
as in Case 2a above, one vertex of T will be changed by a local reduction
(Figure 8), to obtain coloring C ′, which covers more edges than T . This
new coloring covers both the dashed edges without uncovering the solid
edge.

This completes the proof of Theorem 6. �
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+

+

+

+

−

−

−

−

−

+

Figure 7: The coloring after reversing the colors of all internal
nodes to obtain T .

+

+

+

+

−

−

−

−

−

+

Figure 8: The coloring after locally adjusting T to obtain C ′.

5 Conclusion

A simple sufficient condition for the bicolorability of primitive hypergraphs
can be checked by a polynomial algorithm (a modification of the Défossez
algorithm [5]). This algorithm further motivated the discovery of a neces-
sary and sufficient condition for their bicolorability. Acknowledging the NP-
completeness of hypergraph bicolorability, there are numerous interesting
questions for exploration, both in determining properties that characterize
classes of such hypergraphs, and developing algorithms for obtaining valid
colorings. The duality inherent in primitive hypergraphs may also lead to
avenues for future study.

13



References

[1] C. Berge. Two theorems in graph theory. Proceedings of the National
Academy of Sciences, 43(9):842–844, 1957.

[2] C. Berge. Hypergraphs: Combinatorics of Finite Sets. North-Holland
Mathematical Library. Elsevier Science, 1984.

[3] C. Berge. Graphs and Hypergraphs. Elsevier Science Ltd, 1985.

[4] S. Cook. The complexity of theorem-proving procedures. In Pro-
ceedings of the 3rd annual ACM Symposium on Theory of Computing,
STOC ’71, pages 151–158, 1971.
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